# Innovative Field Method for Determining Site-Specific Mine Material Expansion and Compaction Characteristics

**26th Annual** 

Mine Design, Operations & Closure Conference

Michael J. Fischer, P.E.

Gary L. Hazen, P.E., R.G.

Abhay I. Sonawane, P.E.

May 9, 2018



WATER + ENVIRONMENT + TRANSPORTATION + ENERGY + FACILITIES

# Overview

- Basic Expansion/ Compaction Concepts
- Conventional Approaches
- Innovative Approach
- Additional Considerations
- Results



# Typical Uses of Expansion/Compaction Factors

- Quantity Estimates
  - Excavation
  - Loading and Hauling
  - Placement
  - Borrow, Excess, and Amendment
- Cost Estimates
- Design of Repository (or Other Earthwork Features)







#### **Problem Statements**

Inadequate consideration of sitespecific expansion/compaction factors results in:

- Inaccurate productivity, schedules, and cost estimates
- Oversized/undersized repositories (or other earthwork features)

Generic factors most problematic during design and construction phases!



Extracted from A Guide to Developing and Documenting Cost Estimates during the Feasibility Study. EPA 540-R-00-002, OSWER 9355.0-75.

# **Basic Expansion/Compaction Concepts**

Bank Volume – The volume of material in its undisturbed state

(in-place or in-situ).



Examples: Survey and Excavation Quantities



# Basic Expansion/Compaction Concepts

Loose Volume – The volume of material that has been removed from the earth and moved or placed in a different location in an

uncompacted state.

$$BCY * EF = LCY$$

- Unit: Loose Cubic Yard (LCY)
- Examples: Loading and Haul Quantities



# **Basic Expansion/Compaction Concepts**

Compacted Volume – The volume of material measured after it is placed and compressed mechanically in a fill. Also known as the embankment volume.



- Unit: Embankment Cubic Yard (ECY)
- Example: Placement Quantities



### Bank Volume ≠ Loose Volume ≠ Compacted Volume



- Why is this the case?
  - Due to this process, the material occupies different volumes
- Typically LCY>ECY>BCY
- In cases of extreme compactive efforts, BCY>ECY!



**Poorly Graded** 



Well Graded

#### Conventional Approaches for Estimating Expansion/Compaction Factors

#### Literature Values:

Generic factors obtained from reference sources for common soil/rock types

- Advantage
  - Readily available
- Disadvantage
  - Limited number of categories
  - Not representative of heterogeneity
  - Lack of site-specific data
  - May not meet design specifications



#### Conventional Approaches for Estimating Expansion/Compaction Factors

#### Laboratory Geotechnical Data:

#### Proctor density testing

- Advantage
  - Wide variety of soil/ gravel can be tested
  - Site-specific data





- Limited by size
- Narrow range of compaction effort
- Delays in obtaining laboratory test data
- Shipping/disposal of contaminated materials by lab



# Starting Basis for Innovative Field Test Method

- ASTM D5030-04 Standard Test Method for Density of Soil and Rock in Place by the Water Replacement Method in a Test Pit
- Addressed 1 of 3 states of material volumes (i.e. bank volume)
- Innovation is a simplified approach eliminating template
- Also includes method for loose and embankment volume





# Innovative Field Method Procedure: Bank Volume

- 1. Excavate Material for 2. Line Excavated Test Test Pit
  - Pit
- 3. Measure Volume of Test Pit with Water







### Innovative Field Method Procedure: Loose Volume

- in Container
- 1. Place Loose Material 2. Measure Depth to **Loose Material** 
  - 3. Repeat!







# Field Method Procedure: Compacted Volume

1. Compact Loose Volume in Container





3. Repeat!







# **Additional Considerations**

Test Pit Freeboard



- Container Volume Dimensions
  - Size and Shape
  - Volume Confirmation





#### **Calculations**

#### **Volume Calculations**

- Bank Volume: Convert gallons of water to cubic yards
  - Freeboard Correction



Loose and Embankment Volume:
 Cubic yards calculated from dimension measurements

#### **Factor Calculations**

Expansion Factor:

$$EF = \frac{LCY}{BCY} \longrightarrow_{\text{Water +}} \text{Freeboard}$$

Compaction Factor:

$$CF = \frac{ECY}{LCY}$$

 Calculation repeated for each type of material tested

#### Innovative Approach for Estimating Expansion/Compaction Factors

#### Field Test Method:

Water replacement and container measurement



#### Advantage

- Wide variety of soil/rock can be tested
- Larger size fractions (e.g. cobbles, small boulders)
- Site-specific results
- Wide range of compaction effort
- Real-time results

#### Potential Disadvantages

- Additional equipment
- Limited suitable test locations (e.g. slope)
- Large volume of materials to manage



# Summary of Expansion and Compaction Factors at Gilt Edge Mine Superfund Site, Operable Unit 1 (OU1)

| Mine Material Category           | Expansion Factor (BCY to LCY) |                        |                                   |  |
|----------------------------------|-------------------------------|------------------------|-----------------------------------|--|
|                                  | Site-Specific                 | Professional Judgement | Standard Book Factor <sup>1</sup> |  |
| General Fills                    | 1.27                          | 1.15 <b>-10.4%</b>     | 1.25 <b>-1.60%</b>                |  |
| Reclamation Fill                 | 1.18                          | 1.15 <b>-2.61%</b>     | 1.25 <b>5.60%</b>                 |  |
| Onsite Topsoil/Subsoil Stockpile | 1.33                          | 1.15 <b>-15.7%</b>     | 1.25 <b>-6.40%</b>                |  |
| Onsite Soil Borrow               | 1.11                          | 1.15 <b>3.48%</b>      | 1.25 <b>11.2%</b>                 |  |

<sup>&</sup>lt;sup>1</sup> Common Earth Factor from Figure A.9: Weights and Characteristics of Materials, Means Heavy Construction Handbook



# Mine materials have variable expansion characteristics!

#### **Compaction Factor (LCY to ECY)**

Standard Book Factor<sup>1</sup>: 0.90 Variability -2.22% to 4.44%

# Comparison of Loose Volume Calculations

Estimated Loose Volume for Loading and Hauling

| Mine Material Category           | Estimated<br>Volume | Estimated Volume (LCY) | Difference (LCY)       |                                          |
|----------------------------------|---------------------|------------------------|------------------------|------------------------------------------|
|                                  | (BCY)               | Site-Specific          | Professional Judgement | Standard Book Factor Volume <sup>1</sup> |
| General Fills                    | 4,745,000           | 6,027,000              | (570,000)              | (95,000)                                 |
| Reclamation Fill                 | 968,000             | 1,143,000              | (29,000)               | 67,000                                   |
| Onsite Topsoil/Subsoil Stockpile | 219,000             | 292,000                | (40,000)               | (18,000)                                 |
| Onsite Soil Borrow               | 350,000             | 389,000                | 14,000                 | 49,000                                   |

<sup>&</sup>lt;sup>1</sup> Common Earth Factor from Figure A.9: Weights and Characteristics of Materials, Means Heavy Construction Handbook



Small changes in factors for large volumes equals large differences!

# Cost Impact Due to Differing Conversion Factors

### Assumed Average Unit Cost for Hauling = \$2.50 per LCY

| Mine Material Category           | Estimated Hauling Cost | Difference in Estimated Hauling Cost |                                   |
|----------------------------------|------------------------|--------------------------------------|-----------------------------------|
|                                  | Site-Specific          | Professional Judgement               | Standard Book Factor <sup>1</sup> |
| General Fill                     | \$15,068,000           | (\$1,425,000)                        | (\$238,000)                       |
| Reclamation Fill                 | \$2,858,000            | (\$73,000)                           | \$167,000                         |
| Onsite Topsoil/Subsoil Stockpile | \$730,000              | (\$100,000)                          | (\$45,000)                        |
| Onsite Soil Borrow               | \$973,000              | \$35,000                             | \$122,000                         |

<sup>&</sup>lt;sup>1</sup> Common Earth Factor from Figure A.9: Weights and Characteristics of Materials, Means Heavy Construction Handbook

# Small changes in factors for large volumes can make major cost differences!



# Comparison of Compacted Volume Calculations

#### Estimated Compacted Volume for Placement

| Mine Material Category           | Estimated<br>Volume<br>(LCY) | Estimated Volume (ECY) | Difference (ECY)                         |
|----------------------------------|------------------------------|------------------------|------------------------------------------|
|                                  |                              | Site-Specific          | Standard Book Factor Volume <sup>1</sup> |
| General Fills                    | 6,027,000                    | 5,425,000              | 0                                        |
| Reclamation Fill                 | 1,143,000                    | 1,052,000              | -23,000                                  |
| Onsite Topsoil/Subsoil Stockpile | 292,000                      | 252,000                | 11,000                                   |
| Onsite Soil Borrow               | 389,000                      | 335,000                | 16,000                                   |

<sup>&</sup>lt;sup>1</sup> Common Earth Factor from Figure A.9: Weights and Characteristics of Materials, Means Heavy Construction Handbook

# Small changes in factors for large volumes impact design considerations!



#### **Conclusions**

#### Innovative Field Test Method Results in:

- Improvement in schedules
- Refined accuracy for cost estimates
- Appropriate sizing of repositories and other earthwork features during design
- Additional considerations:
  - Greater impact on large volumes
  - Best use is for large earthwork remediation projects



# Acknowledgements

- Joy Jenkins U.S. Environmental Protection Agency, Region 8
- Mark Meacham U.S. Army Corps of Engineers, Omaha District
- Mark Lawrensen and Mike Cepak South Dakota Department of Environment and Natural Resources





#### **Questions?**

Michael Fischer – <u>fischermj@cdmsmith.com</u>

Gary Hazen – <u>hazengl@cdmsmith.com</u>

Abhay Sonawane – <u>sonawaneai@cdmsmith.com</u>

