

RILEY PASS URANIUM MINES

Prospecting Activities – as early as 1950

Uranium mining operations in 1962

Mining ceased in 1965

Overburden pushed off the outer edges of the pits, highwalls and spoils material with exposed radioactive material

Uranium Mining Riley Pass, North Cave Hills, 1962-1964

2871-2

Historical Imagery

Risk-based Cleanup Levels

Arsenic and Radium-226 soil cleanup levels are used as surrogate for other contaminants of concern.

Determined that removal of Arsenic and Radium-226 soils will also remove other contaminants

Risk-based Cleanup Levels

Arsenic risk-based cleanup level 142 mg/kg

Radium-226 risk-based cleanup level 30 pCi/g

EROSION

- the physical characteristics of the soils,
- the relatively steep terrain they occupy, and
- regional climate conditions

Primary transport of contaminants is erosion – both wind and water

Northeast Drainage Channel – Bluff B

Soil piping throughout spoils material

Bluff G – During Mining - 1964

Bluff G – Post Mining - 2012

Sediment Control Work

- 1. Channel Check Dams
- 2. Bluff Top Sediment Control
- 3. Sediment Ponds

Check Dam Installation

Check Dam looking upstream

Bluff Top Drainage Control

Site Geology

- •Fort Union Formation Tertiary Age (63-50 MYA)
- Principal rock formation throughout the North Cave Hills, including Riley Pass site
- Fort Union is highly permeable and readily transmits groundwater
- Fort Union contains the lignite coal beds, host rock for uranium ore

Sandstone Cliffs, Fort Union Formation

Fractures in Basal Sandstone

Hydrology

No surface water at site, except runoff during snowmelt and rain events

Springs and seeps surface at the base of the sandstone

Riley Pass Reclamation Approach

Isolate the waste

❖ Reclaim using natural landform mine reclamation techniques
Such as Natural Regrade™ GeoFluv

What are the Natural Landforms at Riley Pass?

North Cave Hills Landscape

Reclamation Approach

TRADITIONAL MINE RECLAMATION

- Constant uniform slopes
- *Rock lined ditches
- Terraces
- Erosion Control structures, such as rock basins and check dams

NATURAL LANDFORM RECLAMATION

- Natural channel morphology
- Small drainage basins
- Increased diversity of slope aspects and habitat
- Stable configuration of slopes

Traditional Reclamation Design

Natural Regrade™ Reclamation

Natural Regrade™ Reclamation

Natural Landform Reclamation at Riley Pass Mine Site

- Starting with Natural Regrade™ on bluff tops and slopes
- Placement of large rocks and tree and shrub planting
- •Reclamation approach will evolve as we observe surface runoff and gain experience with Natural Regrade™
- •Isolation of waste, sandstone bluff edges and groundwater flow will likely present challenges

Tronox Settlement Funds

- > BANKRUPTCY CLAIMS SETTLED ABOUT 2012
- FRAUDULENT CONVEYANCE SETTLEMENT JANUARY 2015
- DEPARTMENT OF AGRICULTURE HAS RECEIVED \$194 MILLION
 - For three mine site on National Forest System lands
 - Riley Pass is the largest Site of the three mines

Bluff B Watershed Delineation

North (Pete's Creek)

East (Pete's Creek)

Central (Sediment Pond "SP1")

Southeast (Sediment Pond "SP2")

Watershed ID	Drainage Area		
	(mi²)	(km²)	[acres]
North	0.067	0.17	42.6
East	0.113	0.29	72.2
Southeast	0.025	0.07	16.2
Central	0.039	0.10	25.0
South	0.147	0.38	94.0

Bluff B

ARSENIC

RADIUM-226

Radium-226 Map -:-----

Arsenic Mappin

Bluff B Arsenic Continuous Map

Regional Geology and Uranium Transportation Model

