# ET COVER SYSTEM IN ARID ENVIRONMENTS

JUSTIFYING THE USE OF AN EVAPO-TRANSPIRATIVE COVER SYSTEM FOR CAPPING AN INDUSTRIAL WASTE PILE SAVES CLIENT MILLIONS

Martin E. Carlson, PE

May 8, 2018





#### PRESENTATION OUTLINE

- History Of Project
- Inert Waste Pile Issues
- Preliminary Investigation Activities
- Closure Documentation And Alternative Cap Justification
- Final Closure

#### HISTORY OF PROJECT

- Located In Southern CA
- Wallboard Production Plant Operating Since 1930s
- 2.6M CY Of Waste Wallboard
   (<1% Of Produced Wallboard)</li>
- Preparations For Closure Started In Early 2000s
- 100% Recycle Of Waste Wallboard Started In 2005
  - Inactive Waste Piles Require Closure Under CA Title 27



### **INERT WASTE PILE ISSUES**

- Public Perception (Eye Sore)
- 2.6M CY Of Inert Material
- Spread Across 80 Acres
- IMSA Contents:
  - >99% Inert Waste Wallboard (I.E., Paper And Gypsum)
  - <1% Putrescible Household Waste</p>
- Source Of Dust Pollution



### PRELIMINARY INVESTIGATION ACTIVITIES

- Regional Weather
- GroundwaterCharacterization
- Solid Waste Assessment Testing
- Landfill Gas Investigation



#### REGIONAL WEATHER

- Located In The Salton Basin Desert
- Average Winter Low Temperature Is 35 Deg. F.
- Average Summer High Temperature Is 110 Deg. F.
- Rains 3 To 4 Inches Per Year



## REGIONAL TOPOGRAPHY, GEOLOGY AND GROUNDWATER

- Site Elevations Range From 108' To 117 Along Western Perimeter And 89' To 90' Along Eastern Perimeter
- Waste Pile Up To 136' AMSL
- Colorado River Basin
- Regional Groundwater At Sea Level
  - ~100 Feet Below Waste Pile



#### SOLID WASTE ASSESSMENT TEST

- Installed Below Bottom Of Inert Waste Pile:
  - Two Groundwater Wells
  - Three Lysimeters (15' Below Waste)
  - Three Free-drainage Monitoring Devices (5' Below Waste)
- Sampled Quarterly
- Analyzed For Total Metals,
   Volatile And Halogenated
   Hydrocarbons

#### Results:

- No Impacts To Groundwater
- Landfill Materials Primarily Waste Gypsum (I.E., Calcium Sulfate)
- Non-toxic And Unlikely To Negatively Affect Groundwater
- Low Annual Precipitation And High Annual Evaporation Significantly Reduces Possibility Of Leachate

#### LANDFILL GAS INVESTIGATION

- Putrescible Waste
   Decomposes And Creates
   Methane And Carbon Dioxide
- Gypsum Wallboard
   Decomposes (Generally In Wet Climates) Generates
   Hydrogen Sulfide

#### Testing:

- 36 Locations (22 Waste, 14 Around Perimeter)
- Gas Probes Driven 1 To 3 Feet
   Into Waste Or Soil
- Gas Samples Collected And Analyzed In The Field For Methane, Carbon Dioxide, Oxygen, Nitrogen And Hydrogen Sulfide
- 4 Random Samples Collected And Analyzed At A Laboratory

#### LANDFILL GAS INVESTIGATION

#### Findings:

- No Significant Amount Of Landfill Gas Or Hydrogen Sulfide Were Measured Either Within The Waste Or In The Surrounding
- Potential For Any Significant Landfill Gas Generation Is HIGHLY Unlikely
- Exemption From Landfill Gas Monitoring After Closure Approved



## REGULATIONS / STAKEHOLDERS

- Final Closure Plan Developed Class III Landfill
- Title 40 CFR, Part 58 Criteria For Municipal Solid Waste Landfill
- Title 27 CCR Solid Waste Division
- Stakeholders:
  - California's Department Of Resources Recycling And Recovery (CalRecycle)
  - California Integrated Waste Management Board
  - California Regional Water Quality Control Board
  - Imperial County Air Pollution Control District
  - Imperial County Planning And Development Services
  - Imperial County Public Health Department (Lead Enforcement Agency)

### TITLE 27 CCR – FINAL COVER REQUIREMENTS

- Prescriptive Cover
  - Foundation Layer 2' Prepared Foundation
    - Geotechnically Stable Material
  - Low-hydraulic Conductivity Layer
    - Not Less Than 1-foot Of "Clean" Soil
    - Hydraulic Conductivity Less Than 1X10<sup>-6</sup> Cm/S
  - Erosion-resistant Layer
    - Either Vegetative Layer Or Mechanical
    - 1-foot Of Soil (Capable Of Sustaining Native Plant Growth) Or 1-foot Of Rock
  - Other Requirements
    - No Ponding Areas (All Slopes Greater Than 3%)
    - Precipitation And Drainage Control Plan
    - Steeper Slopes Protected Against Erosion

#### PRESCRIPTIVE FINAL COVER CONSIDERATIONS

- Foundation Layer 2' Prepared Foundation
  - 260,000 BCY Soil
- Low-hydraulic Conductivity Layer 1' Soil/Clay
  - 130,000 BCY Soil/Clay With Less Than 1X10<sup>-6</sup> Cm/S Permeability
- Erosion-resistant Layer 1' Rock
  - 130,000 BCY Topsoil Or Rock
- No Ponding Areas
  - 80 Acres Of Waste (Upper And Lower Decks)
  - Both Nearly Flat
  - Needs Regraded To <3%</li>
  - ~300,000 BCY Cut/Fill To Regrade To <3%</li>

#### **ALTERNATIVE FINAL COVER**

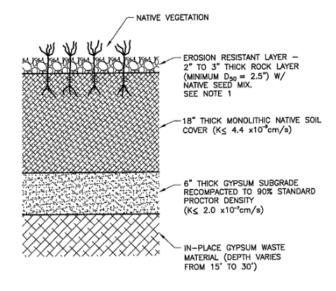
 RWQCB can allow any alternative final cover design that it finds will continue to isolate the waste from precipitation and irrigation waters AT LEAST AS WELL as would a final cover built in accordance with the prescriptive final cover

## DESIGN CONSIDERATIONS FOR ALTERNATIVE FINAL COVER

- Infiltration Reduction
- Grading and Drainage To Remove Ponding Areas
- Erosion Resistant Rock Layer
- Settlement
- Stability
- Site Security And Access

#### INFILTRATION REDUCTION

- Minimize Infiltration Into Underlying Waste
- UNSAT-H To Evaluate Prescriptive And Alternative Covers
  - UNSAT-H Computes The Water Balance Of The Cover System Taking Into Account Precipitation, Infiltration, Evaporation, Soil Storage And Drainage From The Bottom Of The Cover System
- Utilized Local Rainfall Data From Wettest 10-year Period On Record (4.2 Inches Per Year From 1989 To 1998)


#### INFILTRATION REDUCTION

- Compared Prescriptive Cover To Alternative
  - Prescriptive:
    - 1-foot Erosion Resistant Rock
    - 1-foot Soil W/Hydraulic Conductivity Of 1x10<sup>-6</sup> Cm/S
    - 2-foot Foundation Soil W/Hydraulic Conductivity Of 2x10<sup>-5</sup> Cm/S
  - Alternative Cover:
    - 2- To 3-inches Erosion Resistant Rock
    - 18-inches Monolithic Native Soil (On-site Soil) W/ Hydraulic Conductivity Of 4.4x10<sup>-5</sup> Cm/S (Actual Data From On-site Soils)
    - 6-inch Gypsum Waste Regraded And Recompacted To 90% Standard Proctor W/ Hydraulic Conductivity Of 2x10<sup>-7</sup> Cm/S
  - Potential Vegetation Negated In Model

#### INFILTRATION REDUCTION

- UNSAT-H Model Results
  - Alternative Final Cover Outperforms Prescriptive Cover
  - Alternative Final Cover Allows ~37% Less Drainage From Bottom Of Cover

| Cover<br>System | Total Precipitation<br>Over the 10 Wettest<br>Year Period<br>(inches) | Total Drainage From<br>Bottom of Cover Over<br>the 10 Wettest Year<br>Period<br>(inches) | Average Annual<br>Precipitation Over<br>the 10 Wettest Year<br>Period<br>(inches) | Average Annual Drainage<br>From Bottom of Cover<br>Over the 10 Wettest Year<br>Period<br>(inches) |
|-----------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Prescriptive    | 42.2                                                                  | 3.8                                                                                      | 4.2                                                                               | 0.38                                                                                              |
| Alternative     | 42.2                                                                  | 2.4                                                                                      | 4.2                                                                               | 0.24                                                                                              |



#### WASTE GRADING TO REMOVE PONDING AREAS

#### Design:

- Regrade Flat Decks To 1% Minimum Grades (Reduce Cut By 200K BCY)
- Regrade All Steep Slopes Areas To Less That 5H:1V
- Install Diversion Berms At The Top Of All 5H:1V To Intercept And Divert Flows To Rip-rap Lined Downdrain Structures
- Perimeter Drainage Channels Conveying Stormwater Away From Waste Pile
- Title 27 section 21090.B.1.B allow portions of the final cover to be built with grades less than 3% if the discharger proposes an effective system for diverting surface drainage from laterallyadjacent areas preventing ponding in the flatter deck areas
- Stakeholders Approved The 1% Grading And Drainage System

#### **EROSION RESISTANT ROCK LAYER**

- Design:
  - 2- To 3-inches Of Erosion Resistant Rock On Flat Slopes (<10%)</li>
  - 3- To 4-inches Of Erosion Resistant Rock On Steeper Slopes (>10%)
  - Erosion Resistant Rock Has A D50 Of 2.5 Inches
- Hydrology Analysis To Support Use Of 2- To 3-inch Rock Layer In Lieu Of 1-foot Rock Layer
  - 100-year Storm Event
  - Rational Method For Maximum Runoff Rate
  - Safety Factor Method (Design Of Erosion Protection For Long-term Stabilization, Johnson, T.L., 2002)
     Utilized To Evaluate Erosional Stability Of The Minimal Erosion Resistant Rock Layer On Surface <10%</li>
  - Erosional Stability Of The Rock Layer On Surface >10% Utilized Abt And Johnson' Method (Riprap Design For Overtopping Flow, 1991)
  - Perimeter Drainage Channels Conveying Stormwater Away From Waste Pile
- Stakeholders Approved The Use Of 2- To 3-inch Rock Layer

#### ADDITIONAL DESIGN CONSIDERATIONS

- Stability
  - Maximum 5H:1V Slopes
  - Static Safety Factor Of 4.4
  - Seismic Safety Factor Of 1.86
- Settlement
  - Waste Is Inert And Not Organically Degradable
  - Majority Of Elastic Settlement Already Occurred And Compaction Of Surface Likely To Further Consolidate
  - Minimal Water Infiltration Through Alternative Final Cover
  - Annual Inspections And Maintenance Required If Settlement Occurs
- Site Security And Access
  - Access Roads Around Perimeter And Across Top Of Pile For Inspections
  - 6-foot Perimeter Fence Preventing Unauthorized Access

### ALTERNATIVE FINAL COVER COST COMPARISON

| Cover Component                                                       | Quantity    | Cost                     | Cost Difference (Total \$14M Savings) |
|-----------------------------------------------------------------------|-------------|--------------------------|---------------------------------------|
| Prescriptive_24" Foundation Layer (screened native soil)              | 260,000 BCY | \$6.98 / BCY             | Prescriptive +\$850,000               |
| Alternative_18" Monolithic Native Soil Layer (unscreened native soil) | 194,000 BCY | \$4.98 / BCY             |                                       |
| Prescriptive_1' Low-Perm Soil (Imported)                              | 130,000 BCY | \$60 / BCY (\$40/Ton)    | Prescriptive +\$7.6M                  |
| Alternative_0.5" Regraded/Compacted Waste (Onsite)                    | 65,000 BCY  | \$3.21 / BCY             |                                       |
| Prescriptive_1' Erosion Resistant Rock (Imported)                     | 130,000 BCY | \$55.50 / BCY (\$37/Ton) | Prescriptive +\$4.8M                  |
| Alternative_4" Erosion Resistant Rock (Imported)                      | 43,000 BCY  | \$55.50 / BCY (\$37/Ton) |                                       |
| Prescriptive_3% Minimum Slopes                                        | 300,000 BCY | \$2.10 / BCY             | Prescriptive +\$420,000               |
| Alternative_1% Minimum Slopes + Drainage Berms                        | 100,000 BCY | \$2.10 / BCY             |                                       |

#### **CONCLUSION**

- Engineered Alternative Is Appropriate Per 27 CCR 20080 Per The Following:
  - Alternative Out Performs Prescriptive Cover By Allowing 37% Less
     Drainage From Bottom Of Cover System
  - Prescriptive Cover System Is Unnecessarily Burdensome For This Site
     Given The Arid Climate And Inert Nature Of Waste
  - Cost Of The Prescriptive Cover Substantially More And Will Not Provide Better Protection Of Public Health, Safety And The Environment



## **Construction Photos**

## **WASTE REGRADE**





## **WASTE REGRADE**





## MONOLITHIC NATIVE SOIL COVER





## **EROSION RESISTANT ROCK**





## **DIVERSION BERM AND DOWNDRAIN**





## **COMPLETED INSTALL**





## **QUESTIONS?**

Martin E. Carlson, PE CDM Smith Inc. Helena, Montana 59601 (406) 441-1404

