

Common Problems at Precious and Base Metal Mines with Sulfide Ores:

- Acid rock drainage
- Neutral metal leaching

A possible solution to these problems originated as a waste product in the aluminum industry.

Bauxite is refined using the Bayer Process

Red Mud Properties

- pH ~ 13
- Gelatinous, high water content; hard to drain.
- Hard to reclaim the ponds.
- Depending on source of bauxite, may contain heavy metals in addition to Fe.
- Few industrial applications.

Queensland Alumina Red Mud Handling

- As a fresh water conservation measure, the red mud is piped to the pond in a slurry with seawater.
- The pond is also flushed with tidewater every day.
- As a result the red mud at QAL is neutralized by seawater.

Virotec International

- Seawater-neutralized red mud was commercialized by Virotec.
- The company was formerly known as Mount Carrington Mines.
- The trademark for the seawater-neutralized red mud products is Bauxsol TM

Properties of Bauxsol

- Moderate pH
 - Saturated paste pH ≈ 10
 - 1:5 soil reaction pH ≈ 8.6
- Metal binding capacity almost 1500 mg/kg
- Alkalinity is primarily solid (e.g., carbonates)
- Acid neutralizing capacity = 4-7 mol/kg @ pH 7

Major Minerals in Bauxsol

- Hematite (Fe₂O₃)
- Boehmite (γ-AlOOH)
- Gibbsite (Al(OH)₃)
- Sodalite (Na₈Al₆Si₆O₂₄Cl₂)
- Quartz (SiO₂)
- Cancrinite (Na₆Ca₂Al₆Si₆O₂₄(CO₃)₂)
- Hydrotalcite [Mg₆Al₂(CO₃)(OH)₁₆·4H₂O]

Minor Minerals in Bauxsol

- Meixnerite [Mg₆Al₂(OH)₁₈·4H₂O]
- Anatase [TiO₂]
- Aragonite, calcite [CaCO₃]
- Brucite [Mg(OH)₂]
- Diaspore [α-AlOOH]
- Ferrihydrite [(FeOOH)₅(H₂O)₂]
- Gypsum [CaSO₄·2H₂O]
- p-Aluminohydrocalcite [CaAl₂(CO₃)₂(OH)₄·3H₂O]
- Low-solubility trace minerals

Binding of Specific Metals

Mount Carrington Mine

- Au + Ag mine at Drake, N.S.W.
- Country rock contained subeconomic levels of Cu, Zn, and Pb.
- Waste rock was highly acid-generating.
- Drainage water from waste piles contained significant Cd, Cu, Zn, and Pb.
- Mine was closed in 1990.

Location of Mount Carrington Mine

Mount Carrington Mine Study (2000-2013): 3 Programs

- 1. Rehabilitation in 4 acidic waste rock areas
- 2. A second acidic waste rock study: variations of treatment with 5 subplots
- 3. Tailings beach treatment

Program #1:

3 different intervention strategies over 14 years.

- 1. Untreated control
- 2. Waste rock + CaCO₃ + biosolids
- 3. A standard capping treatment (semipermeable clay + topsoil cover)
- 4. Mixture of waste rock + Terra B (Bauxsol)

- Each plot 50 m X 35 m.
- Particle size distribution in each plot ranged from fine clay to boulders (< 1 m diameter).
- Areas 2 & 4 mixed with treatment (5% v/v) to 1 ft depth.
- Area #3 capped with 1 ft clay + topsoil.

 All 4 areas were planted immediately after treatment in 2000 with native tree species (Grey ironbark and golden wattle)

 Tree growth (density and height) monitored by research team.

Eucalyptus paniculata (grey ironbark)

Acacia fimbriata (golden wattle)

- On an acidic waste rock dump ~ 1 mile SE of Program #1
- One control + 4 treatments
- Each plot 25 m X 25 m
- Grey ironbark and narrow-leaf green ironbark planted in 2000.

- 1. Control
- 2. 8% Terra B
- 3. 8% Terra B + 2% biosolids
- 4. 12% Terra B + 3% biosolids
- 5. 2% biosolids only

All 5 areas monitored for

- Soil pH
- Metal concs (Al, Mn, Fe, Zn, Cu, Ca, K, Mg, and Na as %) in leaves compared with *E.* paniculata growing in undisturbed Australian woodlands.
- Tree growth.

Eucalyptus crebra (Narrow-leafed green ironbark)

Program #3 Tailings beach treatment

- Exposed tailings beach treated in 2001 with Terra B
- 3% (v/v) of Terra B added to tailings (1 ft depth)
- 100 m X 100 m area treated

Results

Program #1 Soil pH

Program #1 Total Actual Acidity (mmol/kg)

	Control	CaCO ₃ + biosolids	Clay + topsoil	Bauxsol
2000 (before treatment)	87	87	87	87
2013		45	24	0

Program #1 Total Potential Acidity (%) (Peroxide Method)

	Control	CaCO3 + biosolids	Clay + topsoil	Bauxsol
2000 (before treatment)	0.7	0.7	0.7	0.7
2013		0.18	0.68	0.08

Program #1 Tree growth in Area 1 (control) 2000 2013

Program #1 Tree growth in Area 2 in 2013 (limestone + biosolids)

Program #1 Tree growth in Area 3 in 2013 (Clay/Topsoil Cap)

Program #1 Tree growth in Area #4 in 2013 (Bauxsol)

Program #2 Soil pH over an 8 month period

Program #2 Al & Heavy Metals in Leaves at 2 Years

Program #2 Major Metals in Leaves at 2 Years

Program #3 Tailings Beach before Treatment

Program #3 Tailings Beach in 2013

Program #3 Colonizing of Tailings Beach, 2013

Shrub (bottlebrush)

Spotted python

Conclusions

- Bauxsol (Terra B) was effective at promoting reclamation of acidic waste rock as indicated by soil pH, tree growth, and reduced heavy metal uptake by trees.
- Limestone, biosolids, and clay-topsoil cap were much less effective
- A single application of Bauxsol in the upper foot of an acidic tailings beach promoted plant growth and colonization.

For further information

Enviremed (U.S. sales)

Virotec Global Solutions

info@enviremed.com

http://virotec.com/

EnviRemed Website:

http://enviremed.com

