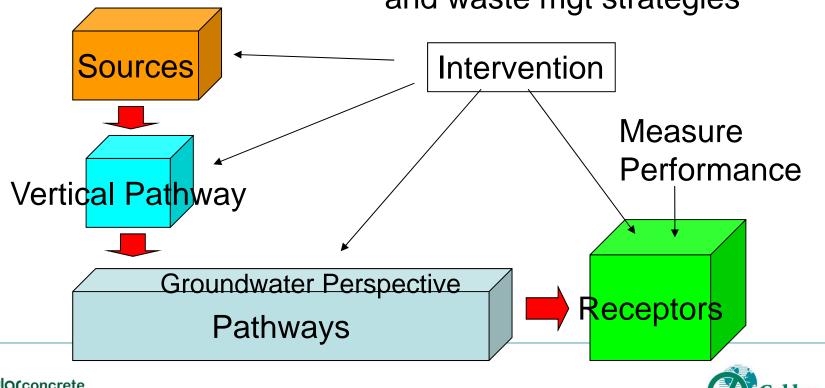
An Innovative Method for Mitigating Impacts from Acid-Producing Rock

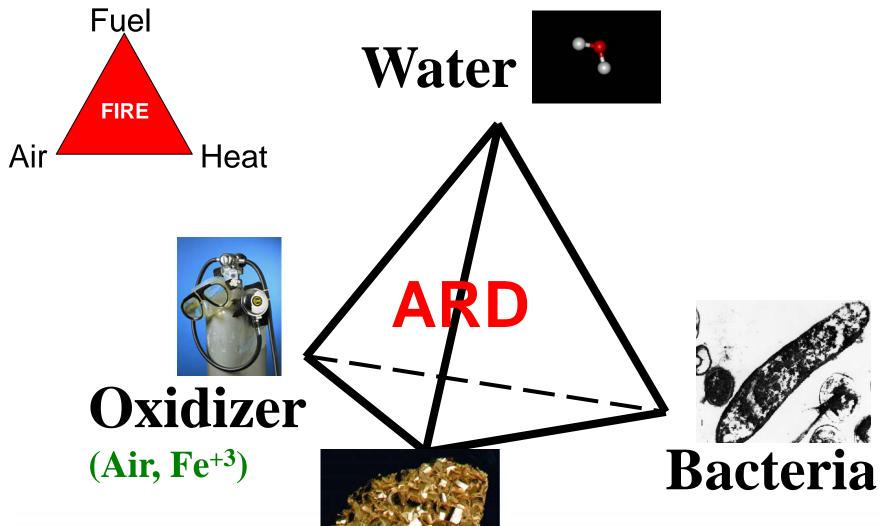
By Jim Gusek, P.E. Golder Associates Inc. Brian Masloff & John Fodor, Cellular Concrete Solutions LLC

Acid Rock Drainage



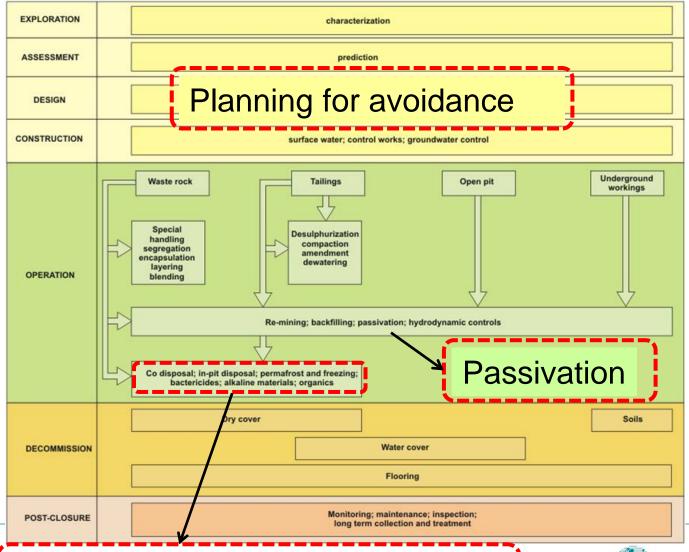
Overview of Best Practice Methods

REF: GARD Guide 2010


www.gardguide.com

Early avoidance of ARD problems is a <u>best practice</u> technique that is integrated into mine planning, design and waste mgt strategies

Acid Rock Drainage Tetrahedron



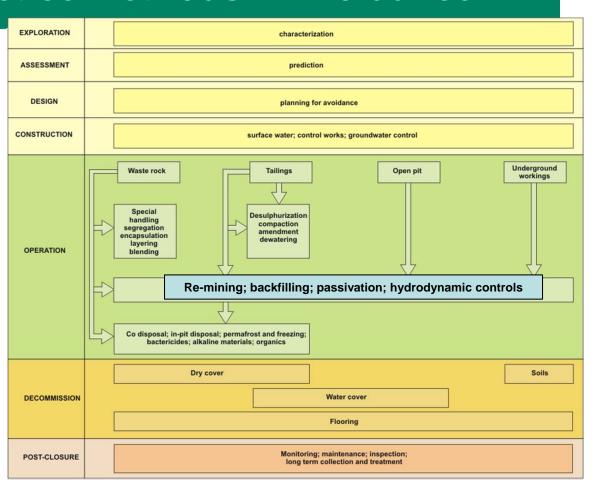
ARD Mitigation Framework

REF: GARD Guide 2010

Also see:

Coal Mine
Drainage
Prediction and
Pollution
Prevention in
Pennsylvania;
Brady et al.,
1998

Co-disposal, in-pit disposal... bactericides, alkaline materials, organics

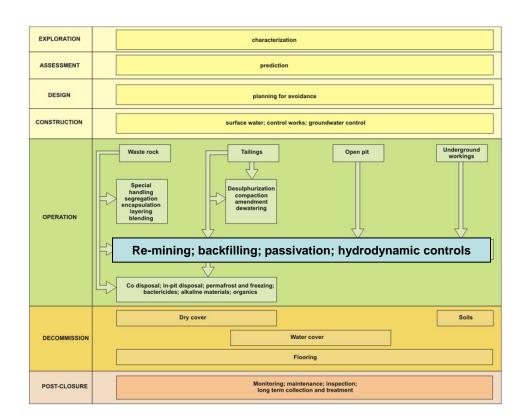


Best Practice Methods - Avoidance

Avoidance

- Special handling methods
 - Incorporate into mine plan
 - Segregation
 - Tailings desulphurization
 - Compaction and conditioning
 - Encapsulation and layering
 - Blending
 - Co-disposal
 - Permafrost and Freezing

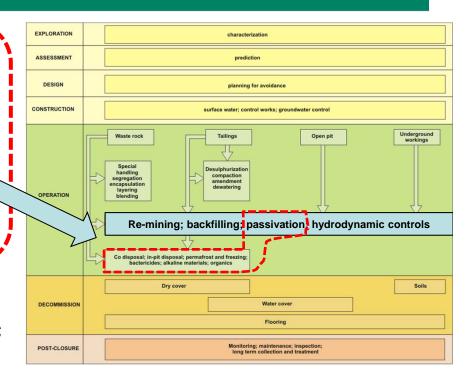
What about abandoned mines?


REF: GARD Guide 2010

Best Practice Methods (Decommissioning)

- Dry Cover Methods
 - Soil
 - Alkaline
 - Organics
 - \$ynthetics
 - Gas barriers
 - Vegetation
 - Landform design
- Water Cover Methods
 - Subaqueous disposal
 - Partial water cover
 - Wetland covers
 - Attenuation
 - Stream flow regulation
 - Water recycle and reuse

REF: GARD Guide 2010



Best Practice Methods- Passivation

- Additions and Amendment Methods
 - Passivation
 - Alkaline materials
 - Organics
 - Bactericides (Brady, Ch. 15)
- Water Management Methods
 - Hydrogeological & Hydrodynamic Controls
 - Dewatering
 - Diversion
 - Flooding
 - Seals

How do you to implement these methods at abandoned mines?

THE REAL PROBLEM: A Medical Analogue

ARD is a global bacterial infection.

There are plenty of geo-antibiotics available but the current situation is akin to the patient taking a shower with Tums dissolved in orange juice - not very effective or practical.

What's needed is a mining-analogue to an I-V drip of tetracycline and/or oral antibiotics.

And then there's the question: Do we need to **Vaccinate** or **Medicate**?

What is currently available in the ARD prevention "pHarmacy"?

Known bactericides

- Sodium lauryl sulfate (EPA-endorsed)
- Alkyl-benzene sulfonate (laundry soap)
- Waste milk (bacteria out-complete acidothiobacillus)
- Sodium Thiocyanate (NaSCN)
- Bi-Polar Lipids

Note: We need to consider the *physics* of delivering and distributing a weak bactericide solution into a porous, unsaturated medium (it's been done, but it wasn't easy)

Cheap alkalinity (acidity)

- Limestone (quarried) crusher fines?
- Dolomite
- Lime kiln dust or cement kiln dust
- Steel slag
- Sodium bicarbonate

Note: We need to consider the *physics* of delivering and distributing a solid into a porous unsaturated medium

Cheap organics (oxygen)

- Sawdust (the finer, the better)
- Paper (newsprint, office waste [shredded])
- De-inking residue
- Biosolids
- MicroCgTM, LactoilTM, others?

Note: We need to consider the *physics* of delivering and distributing a solid into a porous, unsaturated medium

Passivation coatings (oxygen)

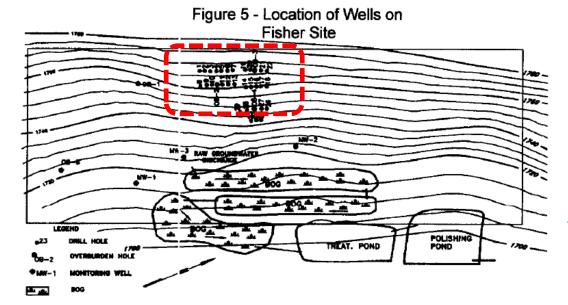
- Keeco Mix (micro-silica)
- Potassium permanganate (Glen Miller, UNR)
- Oil and latex based paint
- Potassium humate (commercial agricultural amendment)
- Others?

Note: We need to consider the *physics* of delivering and distributing a coating into an unsaturated porous medium

One Particular Problem

Treating existing waste rock dumps

- Deliver bactericides without complete flooding of waste rock mass
- Focus the delivery of alkalinity in the "hot zones"
- Deliver organics in hot zones and without complete flooding



Has it been done before?

- Fisher Coal Mine, PA 1995 Vapco Engineering
 - Geophysics targets 3 ARD—generating zones
 - Multiple injection boreholes on a tight spacing
 - Injection of 20% NaOH solution simultaneously into 12 shallow (3 m deep) boreholes with packers
 - □ Injection of 2% sodium lauryl sulfate bactericide
 - □ Seepage continues to be net alkaline 16 years later, bond release is reportedly imminent

Has it been done before?

- Sesquatchie Coal Mine, TN –
 2008 Western Research Institute
 - Geophysics used to target ARD
 - Two doses drip application of waste milk and biosolids (as inoculant)
 - □ Seepage reportedly net alkaline after four years.
 - □ Patent issued January, 2012
 - □ Check out ITRC website

http://www.itrcweb.org/miningwaste-guidance/cs31 sequatchie.htm

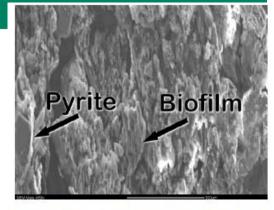


Fig. 6 Substrate dosage experiment: biofilm growing on pyrite after 213 days in a microcosm filled with ground water impacted with acid mine drainage, pyrite, 3 wt% effluent solids (ES) and 5× the required stoichiometric concentration of C (as returned milk) that bacteria would consume while reducing all the SO₄²⁻ in the microcosm. This image was taken at ×450 magnification with a scanning electron microscope.

Ref: Jin et al., 2007

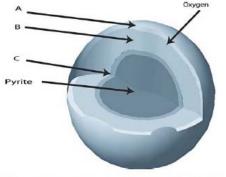


Fig. 7 Conceptual model of the community structure of biofilm growing on pyrite in microcosms. Layers A and B of the biofilm are composed of aerobic and facultatively anaerobic bacteria that consume oxygen (O2) diffusing through the biofilm from overlying water. Layer C is an anaerobe-dominant layer containing sulfate reducing bacteria and other facultative anaerobes; therefore, oxygen diffusion to the pyrite and generation of acid mine drainage is prevented

Perhaps a better way:

Use engineered <u>FOAM</u> as a delivery medium for bactericide "cocktail"

- Use waste milk (biocide) in the liquid phase
- Use sodium lauryl sulfate (bactericide) as part of the surfactant mix
- Add powdered limestone for alkalinity
- Add paper, sawdust, or biosolids as the organic (hoof & horn protein surfactant too)

Perhaps a better way:

Use engineered <u>FOAM</u> as a delivery medium for bactericide "cocktail"

This process is very similar to pressurized grouting, only the grout mass is mostly gaseous, engineered to be temporary, and designed to deposit a coating of active ingredients

Foam Characteristics (Think shaving cream – a LOT of it)

Two-phase "colloid", the gas phase is separated by a liquid phase

Foam can contain a third phase – *suspended solids*

□"Dry" foam (e.g., shaving cream)
□"Wet" foam (e.g., hand soap)

Adding pHoamTM containing powdered limestone to gravel in the lab

Recent Experiments in the Laboratory

Limestone-Coated Gravel

Recent Experiments in the Laboratory

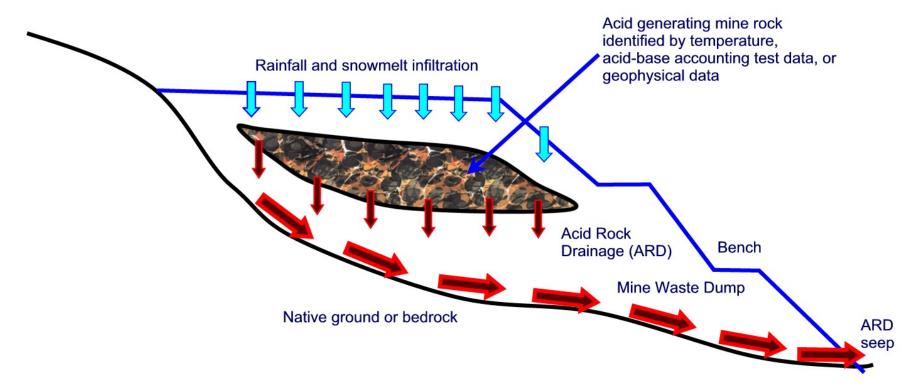
What's the difference between foam and phoamTM???

pHoamTM is a mixture of traditional foam plus one or more "active ingredients" that induce a desirable biological, geochemical, or process-related reaction

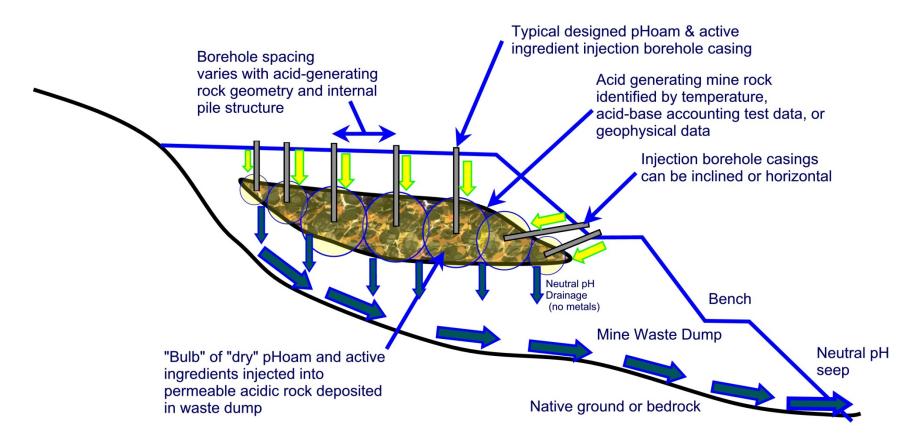
or

Foam + active ingredients that <u>suppress</u> an undesirable reaction.

Some Potential Application Concepts

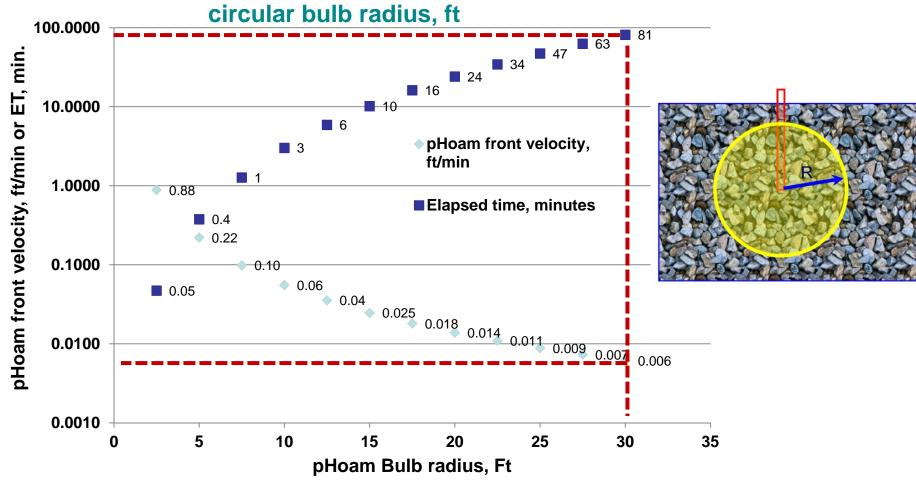

Vaccination (Prevention)	Medication (Mitigation)
Waste rock dumps at active mines ("sterilize" ARD rock by the truckload before it is placed in the dump)	Small-scale "dog hole" abandoned underground mines that produce ARD
Active coarse coal refuse piles (sterilize refuse by adding a "wet" pHoam TM in the feed hopper of a conveyor belt)	Waste rock dumps or coarse coal refuse facilities at abandoned mines (even if they are capped)
Active tailings storage facilities (sterilize the cycloned coarse tails in the embankment – the material most likely to form ARD before capping and revegetation)	Abandoned underground mine stopes (use geophysics for targeting and inject pHoam TM through bore holes) – use mine fire/foam equipment?
Active underground mine stope backfill materials	Backfilled pits (coal or metal) that are poorly capped

Application Concept: Mine Dumps


Waste Rock Dump = Big Humidity Cell

Application Concept: Mine Dumps

Waste Rock Dump



pHoam injection kinetics - theory

Theoretical pHoam front velocity, ft/min vs.

Application Concept: Mine Dumps

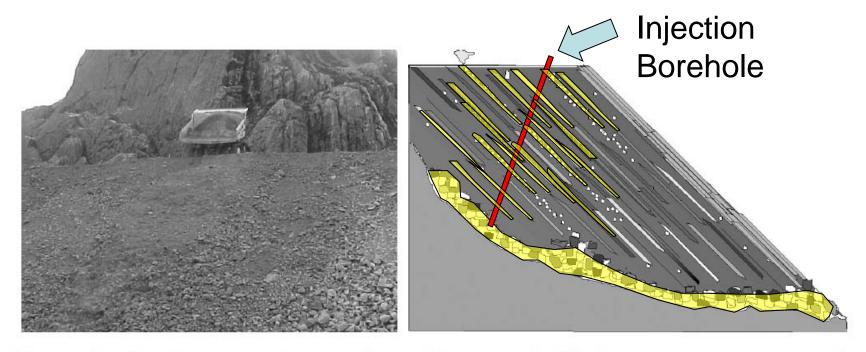
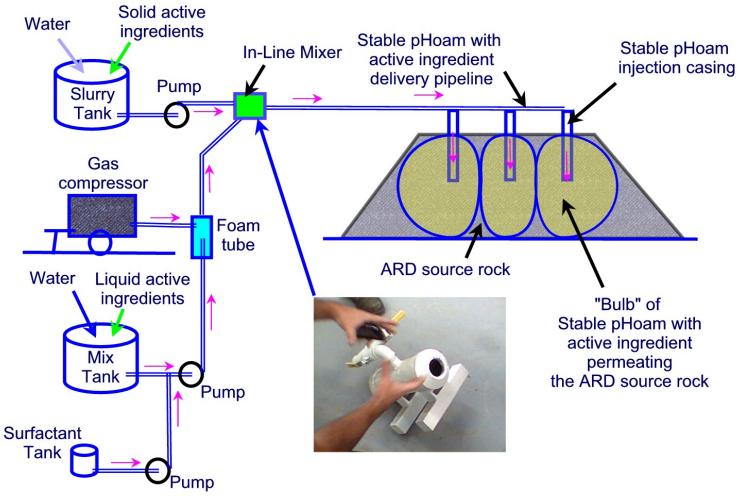


Figure 1. Gravity segregation and resulting interbedded structure in waste rock dumps.

After G.W. Wilson, 2008

The "Heat-Seeking Missile" Effect in ARD Suppression


- Pyrite oxidation is exothermic
- If a pHoamTM encounters a "hot zone" with elevated pyrite, the bubbles should collapse and preferentially deposit the "active ingredients"
- This feature could potentially give pHoamTM a "heat-seeking missile" capability that could automatically deliver more ARD-suppressing active ingredients to a mine waste site in the zones where it is needed the most.

Implementation Concepts

pHoam injection system layout is simple

Teaming Partners

- Golder Associates Inc.
 - Water Treatment and Geochemistry Groups
 - Colorado School of Mines Chemistry Dept.
 - □ Golder Construction Division
- Cellular Concrete Solutions LLC (CCS)
- Site owner/operator or interested entities like watershed groups

Development Steps

- Initial patent filing (16 August 2011)
- Initial demo injecting into a gravel-filled pipe (done)
- Lab Testing (4Q 2011 to 2Q 2012)
 - Entity provides pyrite waste rock dump samples (done)
 - CCS treats samples with foam & amendments (done)
 - Golder/CCS conducts humidity cell tests in-house (ongoing)
 - CCS evaluates foam flow through porous medium (gravel) [planned]

- Demonstration Site (injecting into a real dump) 3Q 2012
- Monitor demo site Q4 2012 and beyond

What about CO\$T\$????

- Need to do comparison with perpetual ARD treatment (either active or passive technologies) or other remedies
- We have a cost model but it has not been validated/ calibrated, so we need demonstration sites
- Example: to perpetually treat ARD from a 73 hectare waste rock dump in Western USA would cost about \$US 30 million. If one assumes that only 25% of the total dump volume would accept or require pHoamTM, the treatment cost is on the order of \$US 15 million.
- Longevity of the treatment is a big issue. The non-pHoamTM treatment at the Fisher Coal Mine in 1995 with NaOH and bactericide is still effective after 16 years.

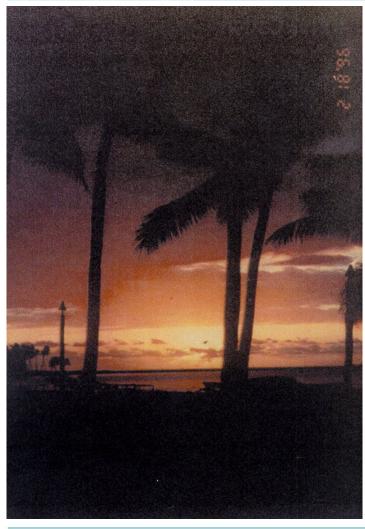
What about CO\$T\$????

- Our cost model is appears to be most sensitive to the cost of solid active ingredients and the surfactant.
- Even a minor credit for disposal of a local waste (e.g., biosolids) could result in a break-even condition.
- Without the credit, cost of treatment might be less than \$1.00 per ton of rock to a fraction of that, depending on whether the rock is "vaccinated" or "medicated".

Ideal pHoam[™] Demonstration Site

- Has re\$earch funding available
- Contains mine waste that is fully characterized, mapped, and is acid-generating
- Is relatively small in scale (1 to 2 acres) (<1Ha)</p>
- Is relatively accessible by conventional construction equipment
- Is amenable to "dissection" after pHoam application
- Has documented ARD impact
- Is on publicly-owned land (USFS, USBLM, USEPA Superfund)
- Is not a part of or contingent upon ongoing litigation

WHY IS pHOAMTM SO SPECIAL?


- Uses very little water
- Flexible design (wet/dry/stiff/flow-able)
- Flexible longevity (hours to days)
- Flexible active ingredients for suppressing ARD whatever is inexpensive locally
- Easy to manufacture with traditional equipment
- Heat-seeking missile effect
- Pumpable or flow-able
- Biodegradable surfactants can double as bactericides
- Permeates unsaturated zones of mine waste to deliver anti-ARD "cocktail" that could last for decades, maybe longer

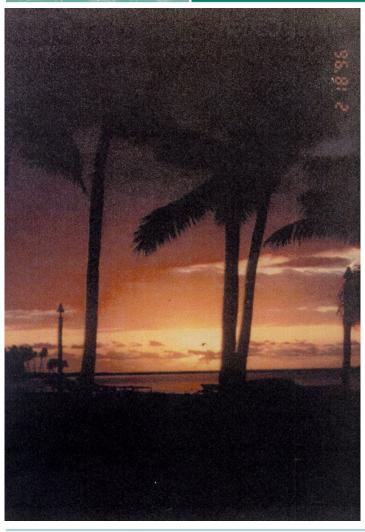
Thank You

Nihil simul inventum est et perfectum

Latin Proverb

jgusek@golder.com

or


ddunham@cellularconcretesolutions.com

Thank You

Nothing is invented and perfected at the same time

Latin Proverb

jgusek@golder.com

or

ddunham@cellularconcretesolutions.com

