

Project Sponsors

- * Montana Department of Natural Resources and Conservation (DNRC)
- * Montana Department of Environmental Quality (DEQ)
- * U.S. Office of Surface Mining Reclamation and Enforcement (OSMRE)

Presentation Outline

- * Sand Coulee Mining History
- * Previous Investigations
- * Source Control and Feasibility Evaluation
- * Recent Investigations
 - * Adit Flow, Monitoring Wells, and Bedrock Aquifer
 - * Drainage Well Practicability
- * Next Steps

Sand Coulee Area Stratigraphy

Contours of the top of the Morrison

Aquifer status of the basal Kootenai sandstone

Sand Coulee Well Field

From Osborne et al., 1987 MBMG Open File Report 197

Sand Coulee Water System Restoration 2010 - 2016

Source Control Investigations

- * DNRC Planning Grant to assess feasibility of groundwater interception (2013-2014)
- * DNRC RDG Grant to conduct Hydrogeological Investigation and install pilot interception wells (2016-2019)

Source Control With Groundwater Interception Objectives

- * Intercept uncontaminated groundwater upgradient of the historic mine workings using gravity-driven drainage wells completed in the basal Kootenai sandstone.
- * Thereby reduce leakage into and AMD emanating from the old mine workings.

Conceptual Well Design

- * Two well designs were considered, a horizontal or low angle well, and a vertical drainage well.
- * Horizontal well installed using directional drilling technology.
- * The vertical drainage well would be installed by a conventional water well contractor.

Conceptual Cross Section for Vertical Well Design

Not to Scale
Prepared By: R. Svingen
Production Date: January 26, 2018
File: SandCoulee_Concept_XSection20180223.cdr

Kk-Kootenai Formation Stratigraphic Units

Source Control Feasibility Evaluation

- * Potential effectiveness of both horizontal and vertical drainage wells were analyzed as part of the 2013-2014 DNRC planning grant.
- * The evaluation focused on estimating the yield of drainage wells and potential reduction in the amount of water discharging from the abandoned mine workings using drainage wells.

Results - Modeled Discharge Volumes from Drainage Wells

* Horizontal well model results

* Six-inch diameter well: 104 to 225 gpm

* Four-inch diameter well: 86 to 138 gpm

* Vertical well model results

* Single drainage well: 52 gpm

* Two drainage wells: 88 gpm

Adit Discharge

- * Need accurate adit discharge measurements.
- * Adit discharge rates affected by factors including precipitation events and seasonal and long-term climatic patterns.
- * Site conditions (freezing winter conditions and the extremely low turbidity of the discharged water favored a design employing non-contact water stage measurement.

Adit Discharge Equipment

- * Four adit discharge sites previous average flow rates of 6.6 to 30 gpm.
- * Two molded fiberglass polyester 0.6' HS-flumes
- * One 3-inch Parshall flume
- * One 0.5' H-flume
- * Senix ToughSonic Chem 10 Ultrasonic level sensor and Campbell Scientific CR300 data logger.

Nelson Drain SC-12

Kate's Coulee SC-8

Adit Discharge Measurements

Horizontal Well Locations

* Preliminary
hydrogeologic
evaluation (well
and survey data)
led to identifying
six feasible well
locations

* H-3, H-5, H-6

Pilot Vertical Interception Well

- * Gravity-driven vertical drainage wells provide additional installation opportunities when compared with gravity-driven horizontal wells
- * Compared with the horizontal wells, a vertical drainage well is not dependent on elevations providing natural drainage at the spud location.
- * A vertical drainage well connecting the Kk₁ aquifer directly to the Madison aquifer would be less expensive than a horizontal well.

Madison Limestone

- * Sand Coulee public water supply (PWS) Wells No. 5 and 6 provide relevant data to evaluate a vertical well.
- * The top of the Madison limestone is between 375 and 400 feet bgs.
- * Groundwater was encountered in the Madison limestone at a depth between 453 and 532 feet.
- * So approximately 78 to 142 feet of unsaturated Madison limestone is present before groundwater is encountered in the Madison Formation.

Vertical Drainage Well Locations

- * Given the surface elevations found within the drainages and the head encountered in Kk₁, more opportunities to locate pilot vertical interception wells exist up-gradient of all mines.
- * Recommended locations include
 - * Within Sand Coulee near MW-102K,
 - * The vicinity of MW-103K which is just up-gradient of the Gerber Mine workings, and
 - * On the bench above Sand Coulee near MW-101K, upgradient of Mount Oregon Mine

Conclusions And Recommendations

- * Moving forward with planning for one horizontal drainage well up to about 2,000 feet long, and
- * One to three vertical drainage wells.
- * Horizontal wells are more technically challenging, and are more expensive but a single installation could have a larger effect on AMD prevention than any single vertical drainage well.
- * More potential opportunities exist for vertical drainage wells which could be added incrementally to achieve a desired level of AMD control.

Current Schedule

- * Continue maintenance and calibration of adit discharge monitoring equipment
- * Coordination with landowners
- * Follow up with regulatory agencies on permitting needs
- * Solicit interest and abilities from drilling companies
- * Prepare drill bids
- * Drill pilot wells late summer

Thank you

David Donohue

davidd@hydrosi.com 406-443-6169

www.Hydrosi.com

Tom Henderson

406-444-6492

www.deq.mt.gov

