Project Sponsors - * Montana Department of Natural Resources and Conservation (DNRC) - * Montana Department of Environmental Quality (DEQ) - * U.S. Office of Surface Mining Reclamation and Enforcement (OSMRE) #### Presentation Outline - * Sand Coulee Mining History - * Previous Investigations - * Source Control and Feasibility Evaluation - * Recent Investigations - * Adit Flow, Monitoring Wells, and Bedrock Aquifer - * Drainage Well Practicability - * Next Steps #### Sand Coulee Area Stratigraphy ## Contours of the top of the Morrison #### Aquifer status of the basal Kootenai sandstone Sand Coulee Well Field From Osborne et al., 1987 MBMG Open File Report 197 #### Sand Coulee Water System Restoration 2010 - 2016 ## Source Control Investigations - * DNRC Planning Grant to assess feasibility of groundwater interception (2013-2014) - * DNRC RDG Grant to conduct Hydrogeological Investigation and install pilot interception wells (2016-2019) ## Source Control With Groundwater Interception Objectives - * Intercept uncontaminated groundwater upgradient of the historic mine workings using gravity-driven drainage wells completed in the basal Kootenai sandstone. - * Thereby reduce leakage into and AMD emanating from the old mine workings. ## Conceptual Well Design - * Two well designs were considered, a horizontal or low angle well, and a vertical drainage well. - * Horizontal well installed using directional drilling technology. - * The vertical drainage well would be installed by a conventional water well contractor. Conceptual Cross Section for Vertical Well Design Not to Scale Prepared By: R. Svingen Production Date: January 26, 2018 File: SandCoulee_Concept_XSection20180223.cdr Kk-Kootenai Formation Stratigraphic Units #### Source Control Feasibility Evaluation - * Potential effectiveness of both horizontal and vertical drainage wells were analyzed as part of the 2013-2014 DNRC planning grant. - * The evaluation focused on estimating the yield of drainage wells and potential reduction in the amount of water discharging from the abandoned mine workings using drainage wells. # Results - Modeled Discharge Volumes from Drainage Wells * Horizontal well model results * Six-inch diameter well: 104 to 225 gpm * Four-inch diameter well: 86 to 138 gpm * Vertical well model results * Single drainage well: 52 gpm * Two drainage wells: 88 gpm ## Adit Discharge - * Need accurate adit discharge measurements. - * Adit discharge rates affected by factors including precipitation events and seasonal and long-term climatic patterns. - * Site conditions (freezing winter conditions and the extremely low turbidity of the discharged water favored a design employing non-contact water stage measurement. ## Adit Discharge Equipment - * Four adit discharge sites previous average flow rates of 6.6 to 30 gpm. - * Two molded fiberglass polyester 0.6' HS-flumes - * One 3-inch Parshall flume - * One 0.5' H-flume - * Senix ToughSonic Chem 10 Ultrasonic level sensor and Campbell Scientific CR300 data logger. ### Nelson Drain SC-12 ### Kate's Coulee SC-8 ## Adit Discharge Measurements #### Horizontal Well Locations * Preliminary hydrogeologic evaluation (well and survey data) led to identifying six feasible well locations * H-3, H-5, H-6 ## Pilot Vertical Interception Well - * Gravity-driven vertical drainage wells provide additional installation opportunities when compared with gravity-driven horizontal wells - * Compared with the horizontal wells, a vertical drainage well is not dependent on elevations providing natural drainage at the spud location. - * A vertical drainage well connecting the Kk₁ aquifer directly to the Madison aquifer would be less expensive than a horizontal well. #### **Madison Limestone** - * Sand Coulee public water supply (PWS) Wells No. 5 and 6 provide relevant data to evaluate a vertical well. - * The top of the Madison limestone is between 375 and 400 feet bgs. - * Groundwater was encountered in the Madison limestone at a depth between 453 and 532 feet. - * So approximately 78 to 142 feet of unsaturated Madison limestone is present before groundwater is encountered in the Madison Formation. ### Vertical Drainage Well Locations - * Given the surface elevations found within the drainages and the head encountered in Kk₁, more opportunities to locate pilot vertical interception wells exist up-gradient of all mines. - * Recommended locations include - * Within Sand Coulee near MW-102K, - * The vicinity of MW-103K which is just up-gradient of the Gerber Mine workings, and - * On the bench above Sand Coulee near MW-101K, upgradient of Mount Oregon Mine #### **Conclusions And Recommendations** - * Moving forward with planning for one horizontal drainage well up to about 2,000 feet long, and - * One to three vertical drainage wells. - * Horizontal wells are more technically challenging, and are more expensive but a single installation could have a larger effect on AMD prevention than any single vertical drainage well. - * More potential opportunities exist for vertical drainage wells which could be added incrementally to achieve a desired level of AMD control. #### Current Schedule - * Continue maintenance and calibration of adit discharge monitoring equipment - * Coordination with landowners - * Follow up with regulatory agencies on permitting needs - * Solicit interest and abilities from drilling companies - * Prepare drill bids - * Drill pilot wells late summer #### Thank you #### **David Donohue** davidd@hydrosi.com 406-443-6169 www.Hydrosi.com #### **Tom Henderson** 406-444-6492 www.deq.mt.gov