

INTRODUCTION

- Background
- December 2012 events
- MBMG Regional seismic monitoring
- NIOSH instrumentation
- ESG geophones
- System expansion

BACKGROUND

- What is a seismic event?
 - Sudden release of energy within the earth's crust which creates seismic waves, i.e. earthquakes
- What is a microseismic event?
 - Very small scale seismic event commonly heard by miners working underground

HISTORY OF MINE SEISMICITY

- Rock noise has long been seen as a warning of changing or unstable ground conditions
- Researched by the US Bureau of Mines beginning in the 1930's

USES

- Range of applications including mining, oil & gas, and exploration
- Underground applications:
 - Geotechnical analysis
 - Seismic hazard
 - Rock burst monitoring
 - Peak particle velocity / acceleration
 - Block cave mapping

DECEMBER 2012

- Increased rock noise reported by miners
- Suspend operations, begin monitoring audible noise from safe locations
- Events recorded by MBMG

REGIONAL SEISMIC MONITORING

- Maintained by the Montana Bureau of Mines & Geology
- Confirm on-site observations
- Detect large events
- Limited number of stations in Northwest Montana

ON-SITE INSTRUMENTATION

- Increased seismic activity prevented personnel from going underground
- The decision was made to install a microseismic monitoring system

NIOSH INSTRUMENTATION

- Dr. Pete Swanson installed two seismographs on Dec 21, 2012
- Decreasing trend over the following weeks
- Quantitative measurement of microseismic activity levels within the mine
- Initial estimate of effected areas and seismic velocity

Photo by Dr. Pete Swanson

NIOSH INSTRUMENTATION

ESG GEOPHONES

- Data Acquisition
 - Sensors
 - Paladin
 - Telemetry
 - HNAS

ARRAY DESIGN

- Determine area of interest
- Work with ESG to optimize array design
 - Sensor spacing
 - Try to surround area of interest with a 3D array of sensors
 - Limited by location of mine workings
 - Determine route from geophones to surface

GEOPHONE INSTALLATION

- Finding a safe location for sensors
- 120V power required at each paladin
- Set-up
 - ESG field technician available to provide training and assist with installation
 - Determine triggering parameters

ESG GEOPHONES

- Event Triggering
 - What constitutes an "event"
- Trigger Parameters
 - Amplitude threshold triggering
 - Number of sensors
 - STA/LTA triggering

GEOPHONE PROCESSING

- Defines the event
 - When
 - Where
 - Magnitude
- Dependent on seismic velocity
 - Requires initial calibration blasts

Back to Contents

Automatic vs Manual

AUTOMATIC PROCESSING

- Events are automatically processed in real time
- Software determines Pwave arrival times based on STA/LTA algorithm
 - Typically less accurate than manual processing
 - Does not pick S-wave arrivals

MANUAL PROCESSING

- Various event types
 - Fracture style events
 - Rock fall
 - Blasts
 - "Noise"

- Remove noise events caused by mining
- Go through each event individually to determine locations
- Process blasts

AUTOMATIC PROCESSING

MANUAL PROCESSING

3D VISUALIZATION

- ESG SeisVis Software
 - Uses colors / shapes / sizes to differentiate magnitude and event type
- Allows visual comparison of event locations with the mine workings

MONITORING

- Daily monitoring by engineering, mine, and safety departments
- Training personnel to differentiate between equipment noise and (micro)seismic events
 - Remote desktop allows users to log in from anywhere with an internet connection

DATA ANALYSIS

All events are tracked in a spreadsheet

- Daily event processing
- Event frequency graphs generated regularly

ESG GEOPHONES

- Determining background seismicity
 - What is "normal"
 - Audible noise vs measured seismicity
 - Work with geotechnical consultants to determine working and monitoring protocols

ESG GEOPHONES

- Additional uses
 - Monitor cycle times
 - Improve practices / procedures

- System expansion
 - Modular design

SYSTEM EXPANSION

MBMG / NIOSH EXPANSION

- Improved regional seismic network
 - Worked with the MBMG to install a regional seismograph near the Troy Mine tailings facility
 - NIOSH researchers working to install a permanent station above the mine workings
 - Difficult terrain
 - Logistical issues
 - Data transmission (telemetry)

ACKNOWLEDGEMENTS

- Dr. Pete Swanson, NIOSH / OMSHR
- Mike Stickney, MBMG Earthquake Studies Office
- ESG Solutions Training Documents
- Bulletin 573, US Bureau of Mines. "Micro-seismic Method of Determining the Stability of Underground Openings" L. Obert, W.I. Duval.
- Troy Mine seismic data

