

CERCLA Removal Action At The Rainy Mine, Washington

<u>by</u>

Robert H. Lambeth, PE, PG, LHG & Paul Hunter, PG
Millennium Science & Engineering, Inc.
Spokane, Washington

MINE DESIGN, OPERATIONS & CLOSURE CONFERENCE
Fairmont Hot Springs, Montana
May 2, 2012

The E W Wells Group LLC

- Merged With Millennium Science & Engineering, Inc.
 January 2012
- Fifty Employees
- Several Offices Throughout The US
- Key AML Offices
 - **Boise**
 - Spokane
 - Salt Lake City

Wells-MSE Performed The Reclamation
At the Rainy Mine as a CERCLA Removal
Action Under Our ID/IQ Contract With
Region 6 Of The U.S. Forest Service,
Mount Baker-Snoqualmie
National Forest

Rainy Mine Location & Info.

- 12 Air Miles Northeast of North Bend, Washington
- Snoqualmie River Drainage
- Elevation = 1,800 Ft. AMSL
- Very Rugged Area
- Heavily Vegetated
- Adjacent to Quartz Cr. >> Taylor R. >> Middle Fork Snoqualmie R. >> Puget Sound
- Annual PPC. = 120 In./Yr. As Rain And Wet Snow
 - ➤ Can be torrential 16 in. at the start of field work
- Popular Recreation Spot
 - Asked not to work weekends

Project History

Abbreviated Preliminary Assessment Performed By USFS - 2003

Site Inspection Performed By Cascade Earth Sciences – 2005

Engineering Evaluation / Cost Assessment Performed By MSE – 2008

Removal Action Performed By MSE - 2012

History & Description

- Mineralized breccia pipes (background implications)
- Initial claims 1946
- 50 tpd flotation mill 1951
- 353 tons Cu, Ag, Au ore produced 1951-1957
- 2 Adits (100 ft. long)
- 1 Shaft (116 ft. deep, 2 compartment)
- 2 Levels

Shaft 116 Level

Shaft 65 Level

Pre-RA Access Condition

Repository Site

Repository - Downhill

Spur Road

WR-1 Shaft Area

WR-2 Access Road

WR-2 Adit

Wasterock Seep Quality

pH = 4.3 su

As = 0.058 mg/L

Cu = 2.02 mg/L

Fe = 0.058 mg/L

 $Pb = < 0.001 \, mg/L$

Se = < 0.002 mg/L

 $Zn = 0.060 \, mg/L$

Wasterock Quality

Paste pH = 3.1 su

As = 15,800 mg/kg

Cu = 1,970 mg/kg

Fe = 100,000 mg/kg

Pb = 80 mg/kg

Se = 10 mg/kg

Zn = 100 mg/kg

Basic Approach

- 1. Improve Access
- 2. Log Repository
- 3. Remove And Shred Stumps
- 4. Excavate Repository
- 5. Fill Spur Road Ravine
- 6. Improve Spur Road Access
- 7. Fill Shaft With Wasterock
- 8. Remaining Wasterock To Repository
- 9. Cap Repository
- 10. Reclaim

Lower Access Road

Mulch Maker

Makin' Mulch

Repository Pit

Spur Road & Ravine

Ravine Fill Complete

Shaft Filling

Design Changes

- Anticipated waste volume was 2,000 cy
- A burned, crushed, and covered mill structure was discovered during excavation that added an additional 700 cy
- The shaft was expected to hold 200 cy, but held 1,200 cy
- 1,800 cy was taken to the repository
- WR-2 was expected to be 25 cy, but was actually 250 cy
- Excavation at WR-2 was terminated after calculating a new "local" background

Repository Groundwater

- Water in the repository pit was clearly identified as groundwater, not precipitation
- A drainline was installed to intercept the groundwater
- The effluent was piped to an infiltration basin filled with coarse rock
- The basin was covered with geotech fabric, then soil and moss

Drain Tile Installation

HDPE Installation

Completed Repository Surface Water Diversion Trench

Completed Repository Lower Berm

<u>Completed Repository</u> <u>"The Salmonberry Orchard"</u>

Repository Plan View

Repository X-Section

Reclaimed Shaft Area - WR-1

Reclaimed Spur Road

(Main Access Left Open)

Orr Excavating, Inc Baker, Oregon

