Robert L. Ballantyne General Manager Worldwide Liquid Solutions, LLC

- Start with Water Testing
 - PH
 - TDS
 - Acid or Base Components

- Nebulization Method
 - Nozzle Design for High Solids Application
 - Orifice size for flow
 - In high Solids applications impingement ball for solid control
 - Open ended helix nebulizer
 - Saturated solutions require venturi fed atomization

High Volume Mechanical Evaporation Efficiency increases

- Air temperature increase
 - Natural Gas Turbine Exhaust 850° F to 1250° F
 - EGT maintained through disposal water injection.
 - Nebulizer selected based on water testing

- Other sources
 - Electric Blower 26,000 CFM at 15 PSI
 - Arid regions best
 - Nebulizer selection unlimited
 - Concerns with large power available
 - Lowest db levels

- Real Estate
 - Best is over the pond
 - Closed location requires drop in rates
 - Lined pits for ph problems

- Recovering raw materials
 - Time of flight separations
 - Preferred location in pit
 - High Berm with open ends at non prevailing wind compass points
 - Atomizer cannon spray with -100° F dry air
 - Still working on this

High Volume Mechanical Evaporation Efficiency increases

- Evaporation Rates
 - Turbine
 - Uncontrolled over pond horizontal
 - 2000 barrels every 10 hours
 - Vertical Stack controlled emission
 - 600 barrels every 10 hours
 - Venturi nebulizer
 - Air cannon 26,000 SCFM
 - 350 barrels per 10 hour run
 - Atomizer cannon spray with -100° F dry air
 - 300 barrels per 10 hour in saturated environment

- Enhancements
 - Turbine
 - Heat exchanger for liquid temperature increase
 - Vertical Stack
 - Heat Exchanger
 - Multiple point injection
 - Venturi nebulizer
 - Heat exchanger
 - Atomizer cannon spray with -100° F dry air
 - Heat exchanger

