

A Semi-Passive Approach to Treating AMD at a Reclaimed Coal Mine

- ☐What is Acid Mine (Rock) Drainage?
- ☐ Background Information
- □ Characterization Data Collection/Analyses
- ☐ Water Treatment Approach
- **□** Questions

Presented by:

Tyler Chatriand, PE

Sovereign Consulting Inc

What is Acid Mine Drainage (AMD)?

- AMD refers to the acidic water that is formed when sulfide minerals are exposed to air and water
 - Catalyzed by bacteria (Acidithiobacillus) metabolize iron and sulfur to produce sulfuric acid
- Metal and coal deposits are often rich in sulfide minerals
 - Poor waste and water management can result in AMD
 - High dissolved metals, low pH (2-6)
 - Perpetual water treatment
 - Source control efforts

Gusek, 2004

Active Mining - 1993

Existing AMD Treatment

- Hydrated Lime Feed Plant
 - Mix alkaline media to neutralize pH and precipitate metals
- 25+ yrs old
- Weak structural integrity
- Inadequate pump system
- Remote Power Outages
- Single stage treatment
 - Insufficient Mn/Al removal

- Treatment Alternatives Analysis
 - Identify and Characterize the source

Site Characterization

- Review Historical Data
- Inventory ARD Sources
- Establish Monitoring and Gaging Stations
- Evaluate Water Chemistry and Contaminant Loadings
- Identify Treatment Alternatives

Post Mining - 2013

Data Analyses – Acidity Loadings

- Conceptual Site Model
 - Acidity Loadings (pH, Fe, Al, Mn, flow rate)
- Compare acidity loadings from each source to the total acidity load observed at the treatment plant (as a percentage of the total loading at the site)
 - Identify data gaps
 - Prioritize treatment areas

Acidity Loadings Comparison

Water Treatment Alternatives

Active Treatment

- Uses chemicals, energy, labor, and infrastructure (high O&M)
- Shortest HRT and smallest possible footprint

Passive Treatment

- Low-energy dynamics employed in natural biological and geochemical processes
 - No moving parts or power requirements
 - Long HRT and large footprint

Semi-Passive Treatment

 Utilizes moving parts and chemicals WITHOUT continuous power and labor required for active systems.

Pebble Quicklime at ARD Source

Aquafix – water wheel driven chemical feed system

Seeps 1 & 2 Lime Dosing

Seeps 1 & 2 Lime Dosing Footprint

Passive Mixing/Aeration – BioMost, Inc

MixWell

A-Mixer

Passive Aeration - Trompe

Water-powered air compressor

- For every 4' TDH,= 1 cfm/25 gpm
- Pond 14 Outfall = 13'
- 3 Trompes in series= 4 CFM at base flow

Pond 14 Construction

Seep 3 Lime Dosing

Seep 5 Passive Treatment

- Added alkalinity from upper lime dosing systems
- "Clean" groundwater influx
- Controlled releases of stormwater ponds above the site
 - Currently piped to below permitted outfall
- Constructed Wetlands

Semi-Passive Treatment

- Capital costs << Completely Passive System</p>
- Annual O&M costs << Active System</p>
- No power = reliable treatment
- Treating at the source allows passive polishing systems to be installed downstream
 - Manganese removal beds
 - Open Limestone Channels
- Cost-effective bandage approach
 - Buys time to explore source control efforts

Questions?

Tyler Chatriand, PE, CFM

Environmental Engineer | email: tchatriand@sovcon.com

Sovereign Consulting Inc.

2101 Fourth Ave, Suite 2130 Seattle, WA 98121

www.sovcon.com

Phone: 206-812-8265

