

Pyrometallurgy and Thermal Processing

COURSE LEVEL OBJECTIVES

- CO1 Calculate mass balances and process heat requirements for industrial applications
- CO2 Apply metallurgical thermodynamics and process fundamentals to solve complex thermal processing problems and evaluate process equipment

COURSE MODULES

- M1 Material Balances and Thermodynamics Review
- M2 Metallurgical Diagrams
- M3 Combustion
- M4 Drying and Calcining
- M5 Roasting
- M6 Vapor Metallurgy
- M7 Slags and Refractories
- M8 Smelting
- M9 Converting
- M10 Molten Salt, Halide Metallurgy, and Metallothermic Processes
- M11 Refining
- M12 Safety and Environmental Considerations
- M13 Processing Schemes/Case Studies

MODULE 1: Material Balances and Thermodynamics Review OBJECTIVES

- MO1 Setup and calculate a mass, or mole, balance for a system.
- MO2 Determine enthalpy, entropy, and free energy values for a given system to demonstrate the basics of chemistry and chemical thermodynamics used in pyrometallurgy and thermal processing.
- MO3 Calculate the heat of reaction/process heat requirement for a system.

MODULE 1 ACTIVITIE	ES and ASSESSMENTS
ACTIVITIES	ASSESSMENTS
 Learning Activity 1 – Lecture material/learning content on process fundamentals and mass balances Video Example – Solving a mass balance problem Learning Activity 2 – Lecture material/learning content on the basics of chemical thermodynamics in pyrometallurgy Video Examples – Solving enthalpy increment problem using Kubaschweski, entropy increments Learning Activity 3 – Lecture material/learning content on solving heats of reaction and determining process heat requirements Video Example – Solving a heat of reaction problem, calculating ΔG Resources: ΔH, ΔS, Cp data tables (Kubaschewski) 	 Homework Assignments: 1-3 Quizzes: 1-3 Discussion Question (participation) Learning Activity Questions (participation)

MODULE 2: Metallurgical Diagrams OBJECTIVES

- **MO1** Interpret and construct predominance area diagrams to evaluate stable phases and processing conditions
- MO2 Interpret Ellingham diagrams to determine Gibbs free energy values, process feasibility, and gas phase partial pressure ratios
- MO3 Evaluate binary phase diagrams by applying principles of thermodynamics

MODULE 2 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity 4 – Lecture material on constructing/using predominance area diagrams Video Example – Determining boundary line equations Learning Activity 5 – Lecture material on utilizing/interpreting Ellingham diagrams 	 Homework Assignments: 4-6 Quizzes: 4-6 Discussion Question (participation) Learning Activity Questions (participation)

- Video Example Determining ΔG, PO₂, CO/CO₂ ratios (ELMO)
- Learning Activity 6 Lecture material on utilizing/interpreting phase diagrams
- Video Example Lever law (ELMO)
- Resource: PDF of Ellingham diagrams (oxide + sulfide)
- Resource: PDF of binary phase diagrams (Slag Atlas?)

MODULE 3: Combustion OBJECTIVES

- MO1 Conduct mass and energy balances for the combustion of a given fuel source, accounting for all constituents.
- MO2 Determine heating values for a given fuel source.

MODULE 3 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity 7 – Lecture material on fuel types, heating values, and proximate/ultimate analyses Learning Activity 8 - Lecture material on solving combustion problems and determining adiabatic/theoretical flame temperatures Video Example – Solving a combustion problem Resources – eia.gov/coal/annual and/or usgs.gov (coal resource and reserves assessment) 	 Homework Assignments: 7, 8 Quiz: 7 Discussion Question (participation) Learning Activity Questions (participation)

MODULE 4: Drying and Calcining OBJECTIVES

- **MO1** Outline process considerations for drying and calcination operations; describe process terminology, equipment, and thermodynamic/kinetic considerations.
- MO2 Prepare van't Hoff plots for decomposition temperature determination.

MODULE 4 ACTIVITIES and ASSESSMENTS

ACTIVITIES	ASSESSMENTS
 Learning Activity 9 – Lecture material 	 Homework Assignments: 9, 10
on process equipment: rotary kilns	• Quiz: 8
 Learning Activity 10 – Lecture 	 Discussion Question (participation)
material on drying processes	 Learning Activity Questions
 Learning Activity 11 – Lecture 	(participation)
material on calcination processes,	 Exam # 1 (covering material from
with a focus on limestone calcination	Modules 1-4)
 Supplemental: Material and Process 	
Factors for Dryer Selection (pdf)	

MODULE 5: Roasting OBJECTIVES

- **MO1** Distinguish between the different types of roasting operations, as well as evaluate process methodologies.
- MO3 Describe the process considerations for fluidized-bed reactors and calculate design parameters for a fluidized-bed.

MODULE 5 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity 12 – Lecture 	Homework Assignments:
material on roasting processes	• Quiz:
 Learning Activity 13 – Lecture 	 Discussion Question (participation)
material on fluidized bed reactors	 Learning Activity Questions
 Supplemental: Introduction to 	(participation)
Fluidization (pdf)	

MODULE 6: Vapor Metallurgy OBJECTIVES

- **MO1** Explain the phenomenon of vapor metallurgy, and outline process considerations for processing volatile metal species, such as zinc
- MO2 Determine metal vapor pressures through calculations or analyzing vapor pressure diagrams

MODULE 6 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity – Lecture material on vapor chemistry/ thermodynamics 	Homework Assignments:Quiz:
	 Discussion Question (participation)

- Learning Activity Lecture material on volatile metal processes
- Learning Activity Questions (participation)

MODULE 7: Slags and Refractories OBJECTIVES

- **MO1** Identify slag types, describe the purpose of slags in smelting operations, and explain how their properties influence their function.
- MO2 Describe the types of refractories and evaluate their properties for selection in thermal processing.

MODULE 7 ACTIVITIES and ASSESSMENTS	
ASSESSMENTS	
 Homework Assignments: Quiz: Discussion Question (participation) Learning Activity Questions (participation) 	
•	

MODULE 8: Smelting OBJECTIVES

- MO1 Identify different types of smelting furnaces
- MO2 Establish process considerations for flash smelting, and explain the benefits compared to other smelting furnaces
- MO3 Calculate process variables for a given system using fundamental mass and energy balance (thermodynamic) principles

MODULE 8 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity – Lecture material on smelting Learning Activity – Lecture material on flash smelters 	 Homework Assignments: Quiz: Discussion Question (participation) Learning Activity Questions (participation) Exam #2 (covering material from Modules 5-8)

MODULE 9: Converting OBJECTIVES

- **MO1** Identify and outline process considerations for different types of converters, such as Peirce-Smith and top blown rotary converters.
- MO2

 Evaluate the thermodynamics of converting, and explain the benefits of each type of converter

MODULE 9 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity – Lecture material on converting fundamentals Learning Activity – Lecture material on process considerations for Peirce- Smith, top blown, and flash converters 	 Homework Assignments: Quiz: Discussion Question (participation) Learning Activity Questions (participation)

MODULE 10: Molten Salt, Halide Metallurgy, and Metallothermic Processes OBJECTIVES

- **MO1** Summarize the principles of molten salt pyrometallurgical processes; evaluate the Hall-Héroult process for aluminum production and detail key thermodynamic and process considerations.
- **MO2** Evaluate halide metallurgy processes, specifically the Kroll process for titanium production, detailing key processing steps.
- **MO3** Determine metals amenable to metallothermic processes (i.e. those that have reductive capabilities).

MODULE 10 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity – Lecture material on molten salt processes: highlighting the Hall-Héroult process Learning Activity – Lecture material on halide metallurgy: highlighting the Kroll process Learning Activity – Lecture material on metallothermic processes 	 Homework Assignments: Quiz: Discussion Question (participation) Learning Activity Questions (participation)

MODULE 11: Refining OBJECTIVES

- **MO1** Assess refining operations based on the presence of impurities and the system under consideration (metal-slag, metal-metal, or metal-gas)
- MO2 Analyze a metal-slag system to evaluate whether the results of fire-refining would be favorable to remove an undesirable constituent
- MO3 Outline process considerations for zone refining and vacuum refining;
 determine whether a system is amenable to these types of refining operations

MODULE 11 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity – Lecture material 	Homework Assignments:
on refining operations/purpose	Quiz:
 Learning Activity – Lecture material 	 Discussion Question (participation)
on fire, zone, and vacuum refining	 Learning Activity Questions
processes	(participation)

MODULE 12: Safety and Environmental Considerations OBJECTIVES

- MO1 Establish safety objectives for pyrometallurgical and thermal processing operations
- MO2 Assess operating parameters, with environmental considerations in mind. (Example: combustion/burner parameters NOx)
- MO3 Evaluate methods of dust collection and gas cleaning
- MO4 Assess methods of heat recovery

MODULE 12 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity – Lecture material on environmental considerations during metallurgical processes and operations Learning Activity – Lecture material on safety in metallurgical operations Resources: EPA – NOx, etc. 	 Homework Assignments: Quiz: Discussion Question (participation) Learning Activity Questions (participation) Exam # 3 (covering material from Modules 9-12)

MODULE 13: Processing Schemes and Case Studies
OBJECTIVES

• **MO1** – Perform mass and energy balances for an extractive metallurgy operation (roasting, smelting, converting, etc.), explain key processing variables, and describe process equipment. Prepare a final report detailing the extractive processes.

MODULE 13 ACTIVITIES and ASSESSMENTS	
ACTIVITIES	ASSESSMENTS
 Learning Activity – Lecture material 	Final Project
on select case studies/processes	