
2
c

X

©

GEOPHYSICS, VOL. 73, NO. 6 �NOVEMBER-DECEMBER 2008�; P. I43–I50, 5 FIGS., 1 TABLE.
10.1190/1.2976116
D vector gravity potential and line integrals for the gravity anomaly
aused by a 2D mass of depth-dependent density contrast
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ABSTRACT

Using line integrals �LIs� used to calculate the gravity
anomaly caused by a 2D mass of complicated geometry and
spatially variable density contrast is a computationally effi-
cient algorithm, that reduces the calculation from two dimen-
sions to one dimension. This work has developed a mecha-
nism for defining LIs systematically for different types of
density functions. Two-dimensional vector gravity potential
is defined as a vector, the net circulation of which, along the
closed contour bounding a 2D mass, equals the gravity anom-
aly caused by the 2D mass. Two representative types of LIs
are defined: an LI with an arctangent kernel for any depth-de-
pendent density-contrast function, which has been studied
historically; and an LI with a simple algebraic kernel for any
integrable density-contrast function. The present work offers
�1� a vectorial-based derivation of formulas that do not suffer
from the arbitrary sign conventions found in some historical
approaches; and �2� a simple algebraic kernel in line integrals
as an alternative to the historical arctangent kernel, with the
possibility of extension to more general cases. The concept of
2D vector gravity potential provides a useful tool for defining
LIs systematically for any mass density function, helping us
understand how dimensions can be reduced in a calculating
gravity anomaly, especially when the density contrast varies
with space. LIs have been tested in case studies. The maxi-
mum differences in calculated gravity anomalies by different
LIs for the case studies were between 5.93�10�6 mGal and
3.52�10�11 mGal. Processing time required per station per
segment of the 2D polygon of a 2D mass using LIs is
0.7–1.5 ms on a Dell Optiplex GX 620 desktop computer, al-
most independent of the density function. The results indicate
that the two types of LIs provide very fast, efficient, and reli-
able algorithms in gravity modeling or inversion for various
types of density-contrast functions.
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I43
INTRODUCTION

The success of inversion of alluvium thickness and basement re-
ief in sedimentary basins, in which compaction plays an important
ole for groundwater assessment or petroleum exploration from
ravity anomalies, greatly depends on the fidelity of the density
odel �Cordell, 1973; Hansen, 1999�. Historically, based on the lim-

ted density data logged, quite a few density-contrast models have
een proposed in gravity modeling. These models are categorized
nto two types: �1� the constant density-contrast model or average
ensity-contrast model �e.g., Bott, 1960; Corbató, 1965; Ferguson,
t al., 1988; Pohánka, 1988; Litinsky, 1989; Holstein and Ketteridge,
996�; and �2� the variable density-contrast model — the density
ontrast of sediments changes with depth and/or horizontal position
artly as a result of compaction.

Variable density-contrast models include �1� exponential decay
odel �Cordell, 1973; Chai and Hinze, 1988; Litinsky, 1989; Chap-

ell and Kusznir, 2008�, �2� hyperbolic decay model �Litinsky, 1989;
ilva et al., 2006�, �3� linear model �Murthy and Rao, 1979; Po-
ánka, 1998; Hansen, 1999; Holstein, 2003�, �4� quadratic model
Rao, 1986; Rao et al., 1990; García-Abdeslem et al., 2005�, �5� par-
bolic model �Rao et al., 1994; Chakravarthi and Sundararajan,
004�, and �6� polynomial model �Guspí, 1990; Zhang et al., 2001�.
Although historically the models for constant, linear, and quadrat-

c density contrasts are described as models that differ from the poly-
omial model, they really are special cases of the polynomial model.
he density contrast as a function of only depth is of great interest

Cordell, 1973; Murthy and Rao, 1979; Rao, 1986; Chai and Hinze,
988; Litinsky, 1989; Rao et al., 1990; García-Abdeslem, 1992; Rao
t al., 1994; Pohánka, 1998; Hansen, 1999; Holstein, 2003; García-
bdeslem et al., 2005; Silva et al., 2006; Chakravarthi and
undararajan, 2007; Chappell and Kusznir, 2008�. In the following
iscussion, I consider a density-contrast function that depends on
nly depth.

Inclusion of variable density contrast obviously introduces sub-
tantial complication not only in gravity modeling, but also in seis-
ic modeling. For instance, if a mass target with spatially variable

23 May 2008; published online 15 October 2008.
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ensity is modeled as two or more bodies with different constant
ensities, the density contrast across the interface introduces spuri-
us reflections �Hansen, 1999; Holstein, 2003�. However, inclusion
f the variable density contrast does approach more real gravity
roblems.

In general, obtaining an analytic expression for the gravity anom-
ly caused by an inhomogeneous mass body of complex shape often
s not possible. Thus, numerical calculation often is inevitable. For
fficient numerical calculation, dimension reduction by transform-
ng 2D areal integrals into 1D always should be a goal. The objec-
ives of this work are �1� to investigate systematically the mecha-
ism of forming LIs to realize dimension reduction; and �2� to find
epresentative types of LIs for different types of density-contrast
unctions so that these LIs can provide very fast, efficient, and reli-
ble algorithms in gravity modeling or inversion.

In the next section, I start from Newton’s gravitational law,
toke’s theorem, and the right-hand rule to define the 2D vector
ravity potential, so that transformation of the 2D areal integral for a
D mass to 1D LIs can be performed from a mathematically rigorous
iewpoint. I discuss the nonuniqueness of the 2D vector gravity po-
ential. Then I derive the LIs with arctangent kernel with integration
irection determined solely by the right-hand rule. I discuss agree-
ent with, and improvement upon, the historical LIs of the litera-

ure. In the subsequent section, I derive the LIs with a simple alge-
raic kernel for any integrable density-contrast function of depth.
hen I show the accuracy and computation time requirement using

he two types of LIs in case studies. Discussion and conclusions are
iven in the last section.

2D VECTOR GRAVITY POTENTIAL

Consider the geometry shown in Figure 1. An infinitesimal mass
ifference dm � ��dV between a 2D mass and its background is at
oint �x,y,z�, where �� is the density contrast, dV is the infinitesimal
olume, and the observation point is on the surface at point
�xi,0,0�. From Newton’s law, the magnitude of attraction on a unit
ass at point P resulting from the infinitesimal mass dm at distance r

s given by

dF � G
dm

r2 r̂ � G
��dV

r2 r̂ , �1�

here G is the Newton’s gravitational constant, r is the distance be-
ween the observation point and the mass source dm � ��dV, and r̂
s the unit vector in the direction from the observation point to the

ass source.

igure 1. A scheme demonstrating the gravity at an observation
oint P�xi,0,0� on the earth’s surface along the x-axis resulting from
mass element at source point �x,y,z�.
The vertical component of gravity observed at point P�xi,0,0� is

gz�xi,0,0� � G�
V

��dV

r2 ẑ · r̂

� G�
V

��zdydxdz
���x � xi�2 � y2 � z2�3

, �2�

here ẑ is the unit vector in z-direction �Figure 1�. Assume the mass
ource is infinite in the y-direction, and the density contrast is as-
umed to be independent of y. Carrying out the integration with re-
pect to y from �Ly to �Ly as Ly→� yields

gz�xi,0,0� � lim
Ly→�

G��
S

���z�zdxdz , �3�

here S is the area projected onto the xz-plane.
Let us denote

I1 � lim
Ly→�

�
�Ly

Ly dy
���x � xi�2 � y2 � z2�3

�
2

�x � xi�2 � z2 . �4�

hus, for an arbitrary 2D mass body in the x-z plane �y � 0�, the ver-
ical component of gravity at point P�xi,0� is

gz�xi,0� � 2G��
S

���z�z
�x � xi�2 � z2dxdz . �5�

his is the general form of the 2D areal integral for calculating gravi-
y anomaly at any point P�xi,0� in the x-z plane caused by 2D masses
ith density contrast variable in depth z.
To convert the 2D areal integral �equation 5� to 1D LI, I resort to

toke’s theorem,

�
S

�� � A� · ds � �
C

A · dl , �6�

here A is an arbitrary vector, ds is a differential areal vector, and dl
s a differential length along the contour C bounding the surface S.
he direction of ds and that of dl must satisfy the right-hand rule; i.e.,
hen curling the fingers of the right hand along the direction of dl,

he thumb points to the direction of ds. This is the basis for determin-
ng the integration direction along the contour bounding the area S in
he LI of the right-hand side �RHS� of equation 6.

In the x-z plane as shown in Figure 2, I choose

ds � ŷdxdz; �7�

igure 2. The 2D cross section of a sedimentary basin with density
ontrast increasing with depth. Width of the basin is w.
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Vector gravity potential and line integrals I45
.e., the direction of ds is along the positive y-axis �unit vector ŷ�.
rom the right-hand rule, the direction of dl along the contour
ounding the area as shown in Figure 2 is counterclockwise; i.e.,

dl � x̂dx � ẑdz . �8�
quation 6 becomes

�
S

�� � A� · ds ���
S

� �Ax

� z
�

�Az

�x
	dxdz

���
C

�Axdx � Azdz� , �9�

here notation .C denotes the line integration counterclockwise
long the contour C of the 2D mass �Figure 2�. Similarly, -C denotes
he line integration clockwise along the contour C.

Comparing equation 9 with equation 5, if I want to convert an ar-
al integral for gravity �RHS of equation 5� to an LI �RHS of equa-
ion 9�, I need only to find a vector A satisfying

�Ax

� z
�

�Az

�x
�

2G���z�z
�x � xi�2 � z2 , �10�

o that the gravity anomaly caused by a 2D mass becomes

g�xi,0� ���
C

�Axdx � Azdz� . �11�

define the vector A that satisfies equation 10 as the 2D vector gravi-
y potential, so that the gravity anomaly caused by a 2D mass equals
he net circulation of the 2D vector gravity potential along the closed
ontour bounding the mass.

Equation 11 is derived based on the choice that the direction of the
ifferential area is along the positive direction of y-axis. If I choose
he negative direction of y-axis as the direction of ds � dxdz, direc-
ion of the line element should be dl � �x̂dx � ẑdz, corresponding
o the clockwise direction along the contour in Figure 2. The gravity
nomaly then is

g�xi,0� � ���
C

�Axdx � Azdz� . �12�

ecause changing integration direction results only in the sign
hange of the integral, I consider only anticlockwise integration.
hus, the default line integration is .C in the following discussion.
Because the curl of the gradient of any scalar field is identically

ero, i.e., for any scalar field V�x,z�, � � ��V� � 0, I have

� � A � � � �A � � V� . �13�
his means that the 2D vector gravity potential defined by equation
0 is not unique; but the gravity anomaly calculated by various 2D
ector gravity potentials satisfying equation 10 should be exactly the
ame, as determined by equation 11 and 12. This nonuniqueness of
he 2D vector gravity potential, but uniqueness of the gravity anoma-
y, provides many options for gravity anomaly calculation using LI
quations 11 and 12 through selecting different 2D vector gravity
otentials �A’s� for different forms of density-contrast function.

LINE INTEGRALS WITH
ARCTANGENT KERNEL

The nonuniqueness of 2D vector gravity allows me to choose the
that satisfies equation 10. In this section, I derive the LIs with arct-
ngent kernel and compare them with historical LIs when the densi-
y-contrast function is dependent only on depth.

Let us choose the 2D vector gravity potential A that satisfies equa-
ion 10 as follows:



Ax � 0,

Az � �2G���z�z� dx

�x � xi�2 � z2

��2G���z�arctan� x � xi

z
	 .

� �14�

nserting equation 14 in equation 11, the vertical component of grav-
ty anomaly becomes

gz�xi,0� ���
C

A · dl � �2G��
C

���z�arctan� x � xi

z
	dz

� � 2G��
C

���z��dz , �15�

here � � ��x � xi,z� is the angle between the line connecting the
bservation point to the source and the vertical line at the source
Figure 2�. This indicates that for the density-contrast model ���z� I
an choose a 2D vector gravity potential A as given in equation 14;
o that the vertical component of gravity anomaly caused by a 2D
ass body is equal to the net circulation of the 2D vector gravity po-

ential A around the closed contour bounding the 2D mass body.
Because the 2D vector gravity potential �equation 14� is depen-

ent on an arctangent function for depth-dependent density-contrast
unctions, and thus the gravity anomaly is calculated by LIs with
rctangent kernel, LI �equation 15� is referred to as LI with arctan-
ent kernel to differentiate it from the other type of LI for integrable
ensity-contrast function to be discussed.

istorical integrals with arctangent kernel for
onstant density-contrast model

Consider the case when the density contrast of the 2D mass is a
onstant; i.e., ���z� � ��0. At the origin of the coordinate system
xi � 0�, the vertical component of the gravity anomaly from the LI
f arctangent kernel �equation 15� becomes

gz�0,0� � �2G��0 ��
C

arctan� x

z
	dz

� �2G��0 ��
C
��

2
� �	dz � 2G��0 ��

C

� dz .

�16�

ecause

��
C

� dz � �� z�
.C

���
C

zd� � 0 ���
C

zd� � ���
C

zd� ,

�17�
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I46 Zhou
t yields

gz�0,0� � 2G��0��
C

� dz � �2G��0��
C

zd� . �18�

omparison with historical line integrals

Consider again the 2D geometry of a mass body as shown in Fig-
re 2. Hubbert �1948� showed that the vertical component of the
ravity anomaly at the origin �0, 0� of coordinates by a 2D mass of
onstant density contrast ��0 can be calculated by the LI

gz�0,0� � 2G��0� � dz � � 2G��0� zd� , �19�

here � is the polar angle between r and the horizontal x-axis. Hub-
ert’s LI �equation 19� later became the basis for the classic Talwani
t al. �1959� computational scheme for rapid computation of gravity
aused by 2D masses when the mass density is constant.

In Hubbert’s paper, the direction of the integration for the LI along
he contour bounding the mass �contour line in Figure 2� was not
pecified systematically. However, Figure 4 in Hubbert’s paper did
ndicate that the integration direction of Hubbert’s LI �equation 19�
s counterclockwise. Comparing equation 18 with equation 19, it is
asy to see that they are exactly the same. Therefore, I conclude that
he general LI �equation 15� with A given by equation 14 degener-
tes to Hubbert’s LI when the density contrast is constant and the ob-
ervation point is at the origin.

Murthy and Rao �1979� extrapolated Hubbert’s LI for the case of
onstant density contrast to the case that the mass density contrast
aries with depth as

gz�0,0� � �2G� ���z�� dz

� �2G� ���z�arctan� z

x
	dz . �20�

urthy and Rao �1979� stated that the line integration 
 is carried
ut in the clockwise direction along the contour bounding the mass.
he change of sign with change of direction of the contour is well un-
erstood, but standard conventions were not always followed in the
ast.

From equation 15, but for clockwise integration, the gravity
nomaly at the origin is

gz�0,0� � 2G��
C

���z�arctan� x

z
	dz

� 2G��
C

���z���

2
� arctan� z

x
		dz

� �2G��
C

���z�� dz , �21�

hich is the same as the LI of Murthy and Rao �1979�. However,
ere for each form of the LI �equations 15 and 18�, the associated in-
egration direction along the contour bounding the 2D mass is speci-
ed uniquely based on the right-hand rule; therefore, the LIs do not
uffer from arbitrary sign conventions. This is an improvement com-
ared with the original development of the LIs by Hubbert �1948�
nd Murthy and Rao �1979�, whereby the integration direction for
he LI was not defined systematically.

The above comparison with the historical LIs �for only constant or
epth-dependent density-contrast functions� shows that the line in-
egrals with arctangent kernel �equations 15 and 18� degenerate to
he historical LIs of the literature when the conditions for these his-
orical LIs are satisfied, and when direction of the integration along
he contour is followed well. For calculating the gravity anomaly at
bservation points not at the origin, I suggest using equation 15 so
hat the integrand and equation of the contour �the boundary of the
D mass� need not be transformed for calculation at each observa-
ion point.

DENSITY-INTEGRATED LINE INTEGRALS
FOR ANY INTEGRABLE

DENSITY-CONTRAST FUNCTION

Now let us find the LIs when the density-contrast function is inte-
rable. Let me define the density-contrast integral as

F�z� �� ���z�dz � C0, �22�

here C0 is a constant that is independent of z for a specific density-
ontrast model. It can be readily proved that

�

� z
� 2GF�z�z

�x � xi�2 � z2� �
�

�x
�2G�x � xi�F�z�

�x � xi�2 � z2 �
�

2G���z�z
�x � xi�2 � z2 . �23�

omparing equation 23 with equation 10, I can define a 2D vector
ravity potential as


Ax � 2G
F�z�z

�x � xi�2 � z2 ,

Az � �2G
�x � xi�F�z�

�x � xi�2 � z2 .� �24�

Inserting equation 24 in equation 11, the LIs for the gravity anom-
ly caused by a 2D mass become

g�xi,0� � 2G���
C

F�z�z
�x � xi�2 � z2dx

���
C

�x � xi�F�z�
�x � xi�2 � z2dz	 . �25�

or numerical calculation, z in the first integral in equation 25 should
e expressed as a function of x, whereas x in the second integral
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hould be expressed as a function of z using the equation of the con-
our or the equation of each segment of the contour. However, for a
pecific density-contrast model, the constant C0 in equation 22 must
e determined.

Calculation of C0 depends on the properties of F�z�; and F�z�
hould satisfy the condition that �F�z��z�0 � 0, because the gravity
nomaly is zero when the thickness in z-direction of the mass body
pproaches zero for any density-contrast model, or when the density
ontrast is zero for any thickness of the mass body. This physical
ondition is used to find C0 for a specific density-contrast model. For
he constant density-contrast model, i.e., ���z� � ��0, C0 � 0. The
ensity-contrast integral is F�z� � ��0z. Thus, for any integrable
ensity-contrast function, the vertical component of gravity anoma-
y caused by a 2D mass body is equal to the net circulation of the 2D
ector gravity potential A given by equation 24 around the closed
ontour bounding the 2D mass body. Because the 2D vector gravity
otential given in equation 24 involves the integral of the density-
ontrast function �equation 22�, the LIs given by equations 11 and 12
ith A given by equation 24 are called density-integrated LIs with

lgebraic kernel.
In the above derivation of LI with algebraic kernel �equation 25�, I

mplicitly assume that the observation station is outside the mass
ody. When the observation station is inside the mass body, equation
5 still holds. When this happens, the Cauchy integral formula or
esidue theorem must be used to evaluate the contour integrals in
quation 25. Therefore, the line integral �equation 25� is valid for an
bservation point either inside or outside the target.

CASE STUDIES OF ACCURACY
AND CPU TIME REQUIREMENT

OF LINE INTEGRALS

For the depth-dependent density-contrast
odel, the gravity anomaly for a 2D mass body

an be calculated by the LI with arctangent kernel
iven by equation 15. If the density-contrast
unction is integrable, the density-integrated LI
equation 25� can be used.

Consider the gravity anomaly along a transect
n the x-axis caused by a polygon 2D mass shown
n Figure 3 �top�. The density contrast is assumed
o depend on z quadratically as in the Sebastián
izcaíno Basin, Mexico �García-Abdeslem et al.,
005�; thus

���z� � �0.7 � 2.548 � 10�4z � 2.73

� 10�8z2, �26�

here ���z� is in g/cm3, and z in m. Because only
he integral is concerned, the Gauss-Legendre
uadrature method �Zhou et al., 2003� was used
o carry out the integrations of equations 15 and
5. Because the abscissas and weights of the
-point Gauss-Legendre quadrature formula are
ased on the interval ��1,1�, the actual integra-
ion interval for each segment of the polygonal
ross section is transformed into the ��1,1�
ange �Davis and Rabinowitz, 1984�.

Figure 3. Top:
2D cross secti
resented by
cm3, where z i
kernel �equati
For the LI with arctangent kernel �equation 15�, the density-con-
rast function can be inserted in the integral directly. For the density-
ntegrated LI with algebraic kernel �equation 25�, if we insert the
uadratic-density-contrast model in equation 22, the density-con-
rast integral takes the form

F�z� �� ���z�dz � �0.7z � 1.274 � 10�4z2 � 9.1

� 10�9z3, �27�

here constant C0 in equation 22 is found to be zero because F�z�
atisfies �F�z��z�0 � 0.

By inserting equation 27 in equation 24, the 2D vector gravity po-
ential takes the form


Ax � 2G
��0.7 � 1.274 � 10�4z � 9.1 � 10�9z2�z2

�x � xi�2 � z2 ,

Az � 2G
�0.7 � 1.274 � 10�4z � 9.1 � 10�9z2��x � xi�z .

�x � xi�2 � z2
�

�28�

he contour usually is approximated as a polygon, with each seg-
ent or side of the polygon being a line segment, unless the exact

orm of the contour equation is known. The number of vertices or
egments of the contour bounding the mass is assumed to be M �for
igure 3, M � 7�.

on contour of a 2D mass, length unit m. It is a model representing the
n elongated sediment valley with sedimentary density contrast rep-
ratic model ���z� � �0.7 � 2.548�10�4z � 2.73�10�8z2 g/
Bottom: Gravity anomalies calculated using the LI with arctangent
and density-integrated LI �equation 25�.
Polyg
on of a
a quad
s in m.



c
f

x

a

w

v
q

g

a

F
c
e

w

�
t
x
b
g
3
n
�
p
6
c
q
e

c
t
i
f
t
g

m
w
c
1
�

w
i

F
e
n

I48 Zhou
The kth segment is formed from points �xk,zk� and �xk�1,zk�1� in
ounterclockwise order, whose line equation is given in parametric
orm �H. Holstein, personal communication, 2008�,

� xk�1 � t� � xk�1t, z � zk�1 � t� � zk�1t �29�

nd

dx � �xk�1 � xk�dt, dz � �zk�1 � zk�dt , �30�

here t is a parameter between 0 and 1.
This parameterized form for the mass boundary has the added ad-

antage that the interval �0, 1� for t is adapted easily for Gaussian
uadrature. Thus, equation 15 becomes

z�xi,0� � � 2G �
k�1

M �
zk

zk�1

���z�arctan� x � xi

z
	dz , �31�

nd equation 25 becomes

gz�xi,0� � �
k�1

M ��
xk

xk�1

Axdx � �
zk

zk�1

Azdz	 �32�

or the quadratic-density-contrast model �equation 26�, the two
omponents of the 2D vector gravity potential in equation 32 are giv-
n in equation 28.

Figure 3 �top� shows the shaded geometry of a sedimentary basin
ith density contrast decreasing with depth �equation 26�. Figure 3

igure 4. Top: Polygon contour of a 2D mass, representing the 2D
longated sediment valley. Bottom: Gravity anomalies using the LI
el �equation 15�, density-integrated LI �equation 25�, and results by
bottom� shows the numerical solutions of equations 31 and 32 for
he gravity anomaly along a transect with 27 observation stations on
-axis using the Gauss-Legendre method. The maximum difference
etween the gravity anomalies calculated using the LI with arctan-
ent kernel �equation 31� and the LI with algebraic kernel �equation
2� is 3.52�10�11 mGal when n � 10, where n is the number of
odes for Gaussian quadrature. That maximum difference is 1.11
10�15 mGal when n � 30. When n � 10, calculation at the 27

oints in Figure 3 �bottom� using equations 31 and 32 requires about
4 ms and 130 ms, respectively, on a Dell Optiplex GX 620 desktop
omputer. When n � 30, calculation using equations 31 and 32 re-
uires about 143 ms and 277 ms, respectively, on the same comput-
r.

The maximum difference between n � 30 and n � 10 in the cal-
ulated gravity anomalies at the 27 stations in Figure 3, using equa-
ion 31, is 3.52�10�11 mGal. This indicates that the improvement
n the calculated results from the increase in the number of nodes
rom 10 through 30 in Gaussian quadrature is slim, although CPU
ime increases more than double. For most cases, n � 10 might be
ood enough.

Figure 4 shows the comparison of the gravity anomaly of a sedi-
entary valley �approximated as a polygon� calculated using the LIs
ith Zhang’s modeling results �Zhang, 2001�. The thickness at the

enter of the valley is 2 km, and the width of the sedimentary basin is
0 km. The density contrast is assumed to depend on z linearly
Zhang et al., 2001�; thus

���z� � � 0.55 � 2 � 10�4z , �33�
here ���z� is in g/cm3, and z in m. Results using the LIs developed

n this work agree well with those of Zhang et al. �2001�.
Figure 5 shows the gravity anomaly of a 2D ba-

sin approximated as a 2D polygon with density
contrast being an exponential function �Chai and
Hinze, 1988�,

���z� � �0.5 exp�� 1.609 � 10�4z� ,

�34�

where ���z� is in g/cm3, and z in m. The density-
contrast integral is

F�z� �� ���z�dz � C0

� �6224.04 exp��0.8045

� 10�4z�sinh�0.8045 � 10�4z� ,

�35�

where the constant C0 in equation 22 is found to
be 3107.52 m·g/cm3. Gravity anomalies are cal-
culated by the LI with the arctangent kernel
�equation 31� and density-integrated LI with al-
gebraic kernel �equation 32�.

Results of Chai and Hinze �1988� also are
shown in Figure 5 for comparison. The contour of
the basin is approximated by a 142-segment poly-
gon. The gravity anomalies are calculated for a
total of 128 observation stations. The number of
nodes for Gaussian quadrature is n � 30. The
maximum difference between the gravity anoma-

section of an
ctangent ker-
et al. �2001�.
cross
with ar
Zhang
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Vector gravity potential and line integrals I49
ies calculated by equation 31 and by equation 32 is 5.93
10�6 mGal, which indicates that both methods agree very well
ith each other. However, the magnitude of the gravity anomalies

alculated by Chai and Hinze �1988� is larger than that calculated by
oth methods developed here.

Calculation for the 128 stations using the LIs requires about
3.501 s CPU time and 25.754 s CPU time, respectively, on the Dell
ptiplex GX 620 desktop computer. CPU time required per station
er segment using these LIs for the exponential density-contrast
odel is 0.74–1.50 ms, almost equal to that for the second order

olynomial density-contrast model, which is 0.77–1.54 ms. Table 1
ummarizes CPU time and maximum difference in gravity anoma-
ies �gz,max calculated using the two types of LIs in application to the
uadratic and exponential density-contrast models. Results indicate
hat the CPU time required to calculate gravity anomalies using
hese LIs is similar and almost independent of the
ensity-contrast model, but dependent on the
omplexity of geometry.

DISCUSSION

Converting 2D areal integrals to 1D line inte-
rals in computing a gravity anomalies caused by
D masses of complicated geometry and spatially
ariable density is efficient because the calcula-
ion is reduced to one dimension from two dimen-
ions. Based on Newton’s gravitational law,
toke’s theorem, and the right-hand rule, a sys-

ematic study from a mathematically rigorous
iewpoint was made of LIs for calculating gravity
nomalies caused by 2D masses of depth-depen-
ent density contrast and the associated integra-
ion direction along the contour bounding the 2D

asses.
Based on Stoke’s theorem, I defined the 2D

ector gravity potential as a vector so that the
ravity anomaly caused by a 2D mass of variable
ensity contrast is equal to the net circulation of
he 2D vector gravity potential along the closed
ontour bounding the mass. The 2D vector gravi-
y potential for a specific problem is not unique.
his nonuniqueness of the 2D vector gravity po-

ential, and the uniqueness of the gravity anomaly

able 1. Comparison of LIs in gravity-anomaly calculation fo
I/alg refer to LI with arctangent kernel and LI with algebra

ensity-contrast model

odes �n� of Gaussian quadrature

egments �M�
tations

gz,max between LI/arc and LI/alg �mGal�

CPU LI/arc

LI/alg

PU/station/segment

Figure 5. Top
sented by an
where z is in m
�equation 15�,
alculated, provide possibilities of defining LIs for calculating grav-
ty anomalies caused by 2D masses of various forms of density-con-
rast functions.

By appropriately choosing the 2D vector gravity potential that
atisfies Stoke’s theorem when applied to conversion from areal in-
egrals to line integrals for gravity anomaly computation, I defined
wo representative types of LIs based on forms of density-contrast
unctions: �1� LIs with the arctangent kernel that apply to any depth-
ependent density-contrast function; and �2� density-integrated LIs
ith the algebraic kernel that apply to any density-contrast function

hat is integrable �e.g., exponential and polynomial density-contrast
odels�. The LIs with the arctangent kernel degenerate to Hubbert’s

1948� LI for the constant-density case and Murthy and Rao’s �1979�
I for depth-dependent density contrast when calculating the gravity
t the origin in a clockwise direction. Numerical case studies using

ratic and exponential density-contrast models. LI/arc and
nel, respectively.

Quadratic Exponential

10 30 30

7 7 142

27 27 128

2�10�11 1.11�10�15 5.93�10�6

64 ms 130 ms 13.501 s

43 ms 277 ms 25.754 s

— 0.74–1.50 ms 0.77–1.54 ms

on contour of a 2D basin with sedimentary density contrast repre-
ential decay model ���z� � �0.5 exp��1.609�10�4z� g/cm3,
m: Gravity anomalies calculated using the LI with arctangent kernel
y-integrated LI �equation 25�, and results by Chai and Hinze �1988�.
r quad
ic ker

3.5

1
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he polynomial density-contrast model �linear model and quadratic
odel as two special cases� and exponential density-contrast model
ere carried out, and CPU time was monitored for each type of LI.
esults show that CPU times required by the LIs are of the same or-
er �0.7–1.5 ms per station per segment�.

When the density contrast is assumed to be dependent on only
epth, LIs with the arctangent kernel can be established. If the densi-
y contrast is dependent on only, or also on, horizontal position �x� in
he cross sectional plane, LIs with the arctangent kernel do not exist.
owever, using the technique of 2D vector gravity potential, reduc-

ion of the anomaly evaluation to line integral evaluation still might
e possible for some density functions that vary both horizontally
nd vertically in the cross-sectional plane of the mass body. There-
ore, using the 2D vector gravity potential provides a useful tool in
onverting 2D areal integrals to 1D line integrals for accurate and
ast gravity anomaly computation for any possible density-contrast
odel.

CONCLUSIONS

Based on Stoke’s theorem, the concept of 2D vector gravity po-
ential is defined. The gravity anomaly caused by a 2D mass of vari-
ble density contrast is equal to the net circulation of the 2D vector
ravity potential along the closed contour bounding the mass. In
onverting 2D areal integrals to 1D line integrals for calculating
ravity anomaly caused by 2D masses, the concept of a 2D vector
ravity potential and its nonuniqueness provides a useful tool in de-
ning systematically the LIs for any mass density function, helping
s understand how dimensions can be reduced in calculating gravity
nomalies. The integration direction in the LIs is specified uniquely
y the right-hand rule so that the LIs do not suffer from arbitrary sign
onventions found in some historical approaches.

Two representative types of LIs were established based on differ-
nt forms of density functions, LIs with an arctangent kernel and
ensity-integrated LIs with a simple algebraic kernel. CPU time re-
uired per station per segment of the 2D polygon of a 2D mass using
he LIs is 0.7-1.5 ms, almost independent of density function. This
ndicates that the LIs are computationally very efficient and parsi-

onious in calculating gravity anomaly. The maximum differences
n calculated gravity anomalies by different LIs for the case studies
re between 5.93�10�6 mGal and 3.52�10�11 mGal. These re-
ults show that the two types of LIs provide very fast, efficient, and
eliable algorithms in gravity modeling or inversion for various
ypes of density-contrast functions.
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