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nalytic solution of the gravity anomaly of irregular 2D masses
ith density contrast varying as a 2D polynomial function
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ABSTRACT

The analytic solution of the gravity anomaly caused by a
2D irregular mass body with the density contrast varying as a
polynomial function in the horizontal and vertical directions
is extrapolated from a historical version in which the analytic
solution for the gravity anomaly was given only at the origin
of the coordinate system to any point for the density function
in terms of variables relative to that origin. To calculate the
gravity anomaly at stations that are not at origins, a coordi-
nate transformation is performed, in which case the polyno-
mial density contrast function must also be expressed in the
transformed coordinates, or a transformed solution must be
obtained. These analytic solutions can be obtained at any sta-
tion using �1� a solution transformation method, in which the
density function and boundary of a mass body are kept intact,
or �2� a coordinate transformation method, in which polyno-
mial coefficient and boundary of a mass body are trans-
formed accordingly. The issue of singularity and instability
of the analytic methods has been related to case studies. Cau-
tion should be exercised in modeling or interpreting the grav-
ity survey data using the analytic methods for large target-
distance-to-target-size ratios outside the range of numerical
stability. Compared with other published methods, the ana-
lytic solution results agree very well with other numerical or
seminumerical methods, indicating the solution is correct
and can be applied for any gravity anomaly calculation
caused by an irregular 2D mass body with the density-con-
trast approximated as a polynomial function of horizontal po-
sition and/or vertical position when the observation is within
the range of numerical stability.

INTRODUCTION

Gravity exploration requires high accuracy and speed in gravity
orward modeling and inversion so that the gravity anomaly can be
ccurately modeled and subsurface geologic structure can be accu-
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ately inversed from survey data. An analytic �also called closed-
orm� solution of the gravity anomaly caused by a specific mass
ody is often vigorously pursued. However, a closed-form solution
s usually very difficult to find. In this article, I give an analytic solu-
ion at any point in space for a 2D polygon mass body with density
ontrast varying in a polynomial function of horizontal x, vertical z,
r x and z, i.e.,

� �x,z�� �
i�0

Nx

�
j�0

Nz

ai,j xizj, �1�

here � �x,z� is the density contrast at source point �x,z�, constants
ij are the coefficients of the polynomial, and Nx and Nz are the maxi-
um power of x and z, respectively.
This problem has been studied by Zhang et al. �2001�. Zhou

2009b� corrects some errors in Zhang et al.’s �2001� solution when
he density model includes coordinate x and gives a complete set of
quations that are programmable to provide the gravity anomaly at
he origin. However, the closed-form solution in these studies is val-
d and useful for the gravity-anomaly calculation only at the origin.
or the gravity-anomaly calculation at a station that is not at the ori-
in, the formulation in these studies can be obtained through �1� a co-
rdinate transformation �CT� to make the station the origin of the
ew coordinate system so the solution at origin can be directly used
r �2� a solution transformation �ST�, in which the solution at any
oint is obtained without transforming the coordinate system. To
ake the solution at the origin usable for any observation point in the

ption of coordinate transformation, the density contrast in the new
oordinate must be expressed as a polynomial function, too. For a
pecific mass source model of defined density-contrast profile and
he geometry, a coordinate transformation is performed for each sta-
ion, resulting in a new density-contrast profile and geometry.

In the following discussion, the ST method is discussed first, fol-
owed by the CT method. For the ST method, the solution at origin is
xtrapolated to a solution at any point, keeping the density-contrast
unction and the geometry of the mass body intact.Acomplete set of
nalytic equations is thus obtained that can be programmed for cal-
ulating the gravity anomaly when the density contrast is a polyno-
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I12 Zhou
ial function of both x and z, with cases in which the density contrast
s a polynomial function in either direction as special cases. For the
T method, the polynomial coefficient of the density function and

he geometry of the source body are transformed accordingly. The
olution at origin �Zhou, 2009b� is expressed in the original coordi-
ate system, so the forward modeling for a gravity survey can be au-
omated using the survey coordinate system �original system�. Sin-
ularity and numerical instability are then discussed, followed by al-
orithm validation using case studies and comparison for the analyt-
c solutions by both methods. The following is based on Zhang et al.
2001� and Zhou �2009b�, and most of the notations are the same as
n those two articles.

ANALYTIC SOLUTION

I first discuss the analytic solution obtained by the ST method.
onsider a geometry and coordinate system set up as in Figure 1.
he gravity at any station P�x0,z0� along the x-axis �equation 5 of
hang et al., 2001� for the vertical component of a gravity anomaly
aused by a 2D mass becomes

�gz�x0,z0��2G�
i�0

Nx

�
j�0

Nz

ai,j��
S

xizj�z�z0�
�x�x0�2� �z�z0�2dxdz .

�2�

onsider the following identities:

xizj�z�z0�
�x�x0�2� �z�z0�2

�
��x�x0��x0�i��z�z0��z0� j�z�z0�

�x�x0�2� �z�z0�2

� �
m�0

j

Cj
m�z0�m �

n�0

i

Ci
n�x0�n �x�x0�i�n�z�z0� j�m�1

�x�x0�2� �z�z0�2 ,

�3�

here Ci
n and Cj

m are the binomial expansion coefficients. An equa-
ion similar to equation 6 of Zhang et al. �2001� can be then obtained:

O (0,0)

P (x0,z0)

rk

rk+1(xk,zk)

(xk+1,zk+1)

x

z

σ(x,y) = ∑ ∑ aijxizj

i = 0 j = 0

N x N z

igure 1. A schematic for the gravity anomaly at a general point
�x0,z0� resulting from a 2D mass of polygon with density contrast

n the form of a polynomial function of x and z.
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�x�x0�i�n�z�z0� j�m�1

�x�x0�2� �z�z0�2 �
1

i� j�m�n�1

�� �

�x
� �x�x0�i�n�1�z�z0� j�m�1

�x�x0�2� �z�z0�2 	
�

�

�z
� �x�x0�i�n�z�z0� j�m�2

�x�x0�2� �z�z0�2 	
 . �4�

herefore,

xizj�z�z0�
�x�x0�2� �z�z0�2 �

�Ax

� z
�

�Az

�x
, �5�

here the 2D vector gravity potential A takes the form �Zhou, 2008�

�
Ax� �

m�0

j

Cj
m�z0�m �

n�0

i

Ci
n�x0�n 1

i� j�m�n�1

�
�x�x0�i�n�z�z0� j�m�2

�x�x0�2� �z�z0�2

Az�� �
m�0

j

Cj
m�z0�m �

n�0

i

Ci
n�x0�n 1

i� j�m�n�1

�
�x�x0�i�n�1�z�z0� j�m�1

�x�x0�2� �z�z0�2

� .

�6�

pplying Stokes’theorem to equation 2,

��
S

xizj�z�z0�
�x�x0�2� �z�z0�2dxdz

���
S


 �Ax

�z
�

�Az

�x
�dxdz����Axdx�Azdz�. �7�

he vertical component of a gravity anomaly at station P�x0,z0� be-
omes

gz�x0,z0��2G�
i�0

Nx

�
j�0

Nz

ai,j �
m�0

j

Cj
m�z0�m

� �
n�0

i
Ci

n�x0�n

i� j�m�n�1

�
��C
�x�x0�i�n�z�z0� j�m�2

�x�x0�2� �z�z0�2 dx

���C
�x�x0�i�n�1�z�z0� j�m�1

�x�x0�2� �z�z0�2 dz�, �8�

here .C denotes counterclockwise integration along the contour of
he 2D mass body �see Figure 1�, which is approximated by an

e-sided polygon. After integration along the boundary of the
-sided polygon, equation 8 can be rewritten as
e
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Analytic solution of a gravity anomaly I13
�gz�x0,z0���2G�
i�0

Nx

�
j�0

Nz

ai,j �
m�0

j

Cj
m�z0�m

� �
n�0

i
Ci

n�x0�n

i� j�m�n�1 �
k�1

Ne

E�i,j,m,n,k�,

�9�

here E�i,j,m,n,k� is the integral along the kth segment counter-
lockwise from vertex �xk,zk� to vertex �xk�1,zk�1� �see Figure 1�:

E�i,j,m,n,k�� �
zk

zk�1

�x�x0�i�n�1�z�z0� j�m�1

�x�x0�2� �z�z0�2 dz

� �
xk

xk�1

�x�x0�i�n�z�z0� j�m�2

�x�x0�2� �z�z0�2 dx .

�10�

omparing equation 9 above with equation 9 of Zhang et al. �2001�,
e can see that reduction from the former to the latter is done by set-

ing x0�0 and z0�0.
Now following Zhou �2009b�, we consider whether the kth seg-
ent is parallel to the z-axis. When the kth segment is not parallel to

he z-axis, i.e., xk�xk�1, the line equation for the kth segment is

z�px�q, �11�

p�
zk�1�zk

xk�1�xk
, �12�

q�
zkxk�1�zk�1xk

xk�1�xk
. �13�

nserting equation 11 into equation 10 and transforming the first in-
egral in equation 10 from z to x, then coalescing the two integrals
nto one, equation 10 becomes

�i,j,m,n,k�

���
xk

xk�1

�px0�q�z0��x�x0�i�n�px�q�z0� j�m�1

�1�p2�x2�2�p�q�z0��x0�x� �x0
2� �q�z0�2�

dx .

�14�

fter using the binomial theorem and reorganization, it yields

�i,j,m,n,k����px0�q�z0� �
l1�0

i�n

�
l2�0

j�m�1

Ci�n
l1 Cj�m�1

l2

� pj�m�l2�1��x0�l1�q�z0�l2

� Ii�j�m�n�l1�l2�1, �15�

here, when �� i� j�m�n� l � l �1,
1 2
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I�� �
xk

xk�1

x�

cx2�bx�a
dx, �16�

ith a�x0
2� �q�z0�2, b�2�p�q�z0��x0�, and c�1�p2.

Let’s define Q�4ac�b2�4�px0�q�z0�2 �0. Two cases
eed to be considered: Q�0 and Q � 0. For Q�0, i.e., px0�q

z0�0, equation 15 becomes

E�i,j,m,n,k��0. �17�

ith Q � 0, the integral in equation 16 is recursive because

� xn

a�bx�cx2dx�
xn�1

�n�1�c
�

b

c
� xn�1

a�bx�cx2dx

�
a

c
� xn�2

a�bx�cx2dx

Beyer, 1984�. The series of the recursive integrals is given as

I0�
1

�px0�q�z0�
tan�1 �1�p2�xk�1�p�q�z0��x0

�px0�q�z0�

� tan�1 �1�p2�xk�p�q�z0��x0

�px0�q�z0� �, �18�

I1�
1

�1�p2�
ln

rk�1

rk
�

p�q�z0��x0

1�p2 I0, �19�

I��
1

���1��1�p2�
�xk�1

��1�xk
��1�

�
2�p�q�z0��x0�

1�p2 I��1�
�q�z0�2�x0

2

1�p2 I��2, �20�

here

rk�1���xk�1�x0�2� �zk�1�z0�2

nd

rk���xk�x0�2� �zk�z0�2

see Figure 1�.
When the kth segment is parallel to the z-axis, i.e., xk�xk�1,

quation 10 for the E�i,j,m,n,k� function is given by

E�i,j,m,n,k�� �xk�x0�i�n�1Kj�m�1, �21�

here, when �� j�m�1, Kj�m�1 is given by

K�� �
zk

zk�1

�z�z0��

�xk�x0�2� �z�z0�2dz . �22�

rom equation 3, for j�0, I have m�0; for j�1, I have m
0,1, . . . ,j. The range of the value of the index � of K� is from zero

o j�1. Without loss of generality, the series of the recursive inte-
rals for K can be found by setting m�0. For j�0 with ��1,
�
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K1� ln
 rk�1

rk
� . �23�

or j�1 with ��2,

K2� �zk�1�zk�� �xk�x0�
tan�1
 zk�1�z0

�xk�x0� �
� tan�1
 zk�z0

�xk�x0��� . �24�

sing equation 24 of Zhang et al. �2001� for ��2, the recursive inte-
ral equation 22 becomes

K��
1

��1
��zk�1�z0���1� �zk�z0���1�

� �xk�x0�2K��2. �25�

ow equations 9, 15, 17–21, and 23–25 form a complete set of ana-
ytic equations for the gravity-anomaly calculation at any point
�x0,z0� in the x-z-plane outside the mass body based on the ST
ethod.
Let’s consider the analytic solution obtained by the CT method.

ssume the observation point is �x0,z0� in the original survey coordi-
ate system �x,z� from which the solution at the origin has been for-
alized �Zhang et al., 2001; Zhou, 2009b�. To make the observation

oint the origin of the new coordinate system �x�,z��, we perform a
oordinate transformation:

x��x�x0, �26�

z��z�z0. �27�

nder such a coordinate transformation, the density contrast is ex-
ressed as a polynomial function in the new coordinate system, i.e.,

� � �
i�0

Nx

�
j�0

Nz

aij xizj� �
i�0

Nx

�
j�0

Nz

a�ij�x��i�z�� j, �28�

here the new coefficient aij� is given as

a�ij� �
m�i

Nx

�
n�j

Nz

amnCm
i Cn

j x0
m�iz0

n�j . �29�

orrespondingly, the geometry of the mass source in the new coordi-
ate system is obtained through equations 26 and 27. Then the solu-
ion at the origin of the new coordinate system �Zhou, 2009b� is ex-
ressed in the original survey coordinate system so that the forward
odeling for a survey at any number of stations can be automated,

.e.,

�g�x0,z0���2G�
i�0

Nx

�
j�0

Nz a�ij

i� j�1 �
k�1

Ne

E�i,j,k� . �30�

When the kth segment is not parallel to the z-axis, i.e., xk�xk�1,
hen E�i,j,k� in equation 30 is given by

E�i,j,k�
Downloaded 13 Mar 2010 to 69.144.28.204. Redistribution subject to S
��0, for q��0,

� �
l�0

j�1

Cj�1
l pj�l�1�q��l�1I�i�j�l�1, for q��0, �

�31�

q��
z�kx�k�1�z�k�1x�k

x�k�1�x�k

�q�px0�z0, �32�

here p and q are given by equations 12 and 13. The integrals

i�j�l�1� in equation 31 are

I�0� I0, �33�

I�1� I1�x0I0, �34�

I���
1

���1��1�p2�
��xk�1�x0���1� �xk�x0���1�

�
2pq�

1�p2 I���1�
�q��2

1�p2 I���2, ���1�, �35�

here I0 and I1 are given by equations 18 and 19.
When the kth segment is parallel to the z-axis, i.e., xk�xk�1, then

�i,j,k� in equation 30 is given by

E�i,j,k�� �xk�x0�i�1Kj�1,

here K� ��� j�1�1,2,3, . . . � are given by equations 23–25.
ow equations 29–35 form a complete set of analytic equations for

he gravity-anomaly calculation at any point P�x0,z0� in the
-z-plane outside the mass body that are obtained from the CT meth-
d based on the solution at the origin �Zhou, 2009b�.

SINGULARITY AND NUMERICAL INSTABILITY

When the observation point is coincident with the vertices of the
eometry of the mass body, singularity occurs, resulting in calcula-
ion errors. When the kth segment is not parallel to the z-axis, i.e., xk

xk�1, singularity occurs in the argument of the natural logarithm
unction in equation 19 that is used for the analytical methods ob-
ained by the ST and CT methods �see equations 19 and 34�. How-
ver, singularity will not appear in the argument of the arctangent
unction in equation 18 because when px0�q�z0�0, then
�i,j,m,n,k� is given by equation 15. When the kth segment is paral-

el to the z-axis, i.e., xk�xk�1, and the observation point is coinci-
ent with the vertices of the geometry of the mass body, singularity
ccurs in the arguments of the arctangent and natural logarithm
unctions in equations 23 and 24 that are used for both analytical so-
utions.

In either case, the arctangent or natural logarithm function is a
ultivariate function. There is no l’Hopital’s rule for finding the lim-

t of a multivariate function, so the limit is discovered by allowing
he observation point �x0,z0� to approach the vertex �xk,zk� or
xk�1,zk�1� along any curve that passes through �xk,zk� or �xk�1,zk�1�.
ften, it is easier to show that a limit does not exist by demonstrating

hat the limit has different values, depending on the curve used. For
he natural logarithm function in equations 19 and 23, limit does not
xist as the observation point �x0,z0� approaches the vertex �xk,zk� or
x ,z �.
k�1 k�1

EG license or copyright; see Terms of Use at http://segdl.org/
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Analytic solution of a gravity anomaly I15
For the arctangent function in equation 24, consider the case when
he observation point �x0,z0� approaches the vertex �xk,zk�. Assume
he approach is along the curves z0�zk�S�x0�xk� through the
ertex �xk,zk�, where S is the slope,

lim
�x0,z0�→�xk,zk�


 zk�z0

�xk�x0���� lim
�x0,z0�→�xk,zk�


S�x0�xk�
�x0�xk�

�
��S · sgn�x0�xk� . �36�

ere, the sign function sgn�x� is defined as

sgn�x����1 for x	0

�1 for x�0

 .

he limit of �zk�z0� / �xk�x0� is dependent on S as observation
oint �x0,z0� approaches the vertex. This means the limit of �zk

z0� / �xk�x0� does not exist, so neither does tan�1��zk�z0� / �xk

x0��.
When gravity stations are at a vertex of the mass polygon, singu-

arity occurs because the log and arctangent functions are undefined.
convenient and practical way to remove the singularity is to use

he exclusive infinitesimal sphere method to avoid divergence in nu-
erical computation �Zhou, 2009c� because the values on the sur-

ace of the exclusion are very similar and the anomaly is continuous
cross the surface. Although the logarithm function passes through
n infinite singularity, it has a multiplier that tends to zero, rendering
he overall value finite. The same goes for the arctangent function.
he gravity anomaly at the vertex is thus defined. Generally, the ra-
ius of the exclusive infinitesimal sphere can be specified as 


�Rm, where � is a dimensionless, infinitely smaller number and
m is the maximum size of the mass body. In the following discus-
ion, an exclusive infinitesimal circle with a radius of 10�15 m
round the singular point is used to calculate the arctangent and natu-
al logarithm functions.

Numerical stability is a desired property of any algorithm. How-
ver, numerical calculation is often contaminated by numerical in-
tability; small errors from round-off or truncation can be magnified,
eading to large errors — even though the mathematics in the algo-
ithm development are perfect. To evaluate the stability of the ana-
ytic algorithm developed above, consider a square object ��x,z�:

1�x,z��1� with density contrast

� �x,z��x3z3, �37�

here � �x,z� is in g /cm3 and where x and z are in meters �units are
onsistent for � , x, and z unless otherwise noted�. For such an object,
he total mass contrast is zero: �m���1

�1dx��1
�1dzx3z3�0. The parts

f the object in the first and third quadrants have positive mass densi-
y contrast, and the parts in the second and fourth quadrants have
egative mass density contrast. This means �1� the gravity anomaly
t points close to the object along line z�x in the first quadrant
hould have positive gravity anomaly and �2� the gravity anomaly at
n observation point far from the object should approach zero as the
istance from the object increases. From equation 2, the gravity
nomaly at any observation point outside the object is

�gz�x0,z0���2G�
�1

�1

�
�1

�1

x3z3�z�z0�
�x�x0�2� �z�z0�2dxdz,

�38�
Downloaded 13 Mar 2010 to 69.144.28.204. Redistribution subject to S
here the negative sign is from the opposite direction of gravity to
he direction of z-axis in the coordinate setup.

Three methods are used to calculate the gravity anomaly at points
long line z�x at a length interval of �2 from point �2,2� to point
100,100�: the analytic algorithms based on the ST and the CT meth-
ds and the direct numerical integration of equation 38 using the
impson algorithm with variable steps. The computation is per-
ormed on a Dell Optiplex GX 620 desktop computer. Test runs
how that all methods work very well for points close to the object.
hus, the gravity anomaly at point �2,2� is used for intercalibration
mong the three algorithms; all methods produce the gravity anoma-
y at point �2,2� with a difference of no more than 1.5�10�12 mGal.
he difference between the ST and CT analytic algorithms at point

2,2� is 1.6�10�16 mGal.
Figure 2a compares the gravity anomaly versus the x-coordinate

f the observation points calculated by the three methods. Instability
oes not occur for the numerical integration using the Simpson algo-
ithm within the calculation range �x0 � �2,100��. Figure 2b shows
he logarithm of relative error to base 10 versus the x-coordinate of
he observation points, where the result at each station calculated us-
ng the numerical integration is used as the exact value for the rela-
ive error calculation. When the logarithm of the relative error reach-
s zero, we have a 100% relative error. For this example, the 100%
elative error occurs at x0�33 m �16.5 target diameters� for the ST
ethod and at x0�32 m �16 target diameters� for the CT method. To

chieve a relative error of 10�4, we need to be within 5.5 target diam-
ters for both the analytic methods.
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igure 2. �a� Gravity anomaly calculated by the analytic solutions
btained using the ST and CT methods and numerical integration
sing the Simpson algorithm for a square object ��x,z�:�1�x,z
�1� with density contrast � �x,z��x3z3. �b� Logarithm of the rel-

tive error versus the x-coordinate of the observation line for the ST
nd CT algorithms.
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I16 Zhou
The target distance within which the relative error is within 100%
s referred to as the range of numerical stability of the algorithm. The

agnitude of fluctuation increases with increasing target distance
hen the relative error reaches 100% �Figure 2a� for both analytic
ethods. The maximum difference between the ST and CT methods
ithin the calculation range �x0 � �2,100�� is 2.1�10�5 mGal, oc-

urring at x0�93 m — well beyond the range of numerical stability
f both algorithms. Within the range of numerical stability of 16 tar-
et diameters, the maximum difference between ST and CT methods
s less than 1.6�10�8 mGal. The difference between the ST and
impson methods �absolute value� exceeds 1.0�10�7 mGal when
0 � 42 m �21 times the diameter of the target�; the difference be-
ween the CT and Simpson methods exceeds 1.0�10�7 mGal when
0 � 39 m �19.5 times the diameter of the target�.

The actual values above are problem-dependent. These compari-
ons and Figure 2 show that results from the ST and CT methods are
ery similar.Also, singularity that occurs in the arctangent and natu-
al logarithm functions in equations 19, 23, and 24 is the same for the
T and CT methods. Thus, in the following discussion, only results
rom the ST method are shown.

Further tests between the ST and Simpson methods are performed
or density-contrast functions such as � �x,z��xz, xz2, x2z, and x5z5

o that all distributions result in zero total mass contrast. Instability
ccurs for all distributions. Relative error reaches 100% at shorter
istances from the source for higher-order distributions. For in-
tance, the relative error exceeds 100% at about x0�374 m �187
imes the diameter� for lower-order term xz, but for the higher-order
erm x5z5, the relative error reaches 100% at about x0�10 m �five
imes the diameter�. For distributions xz2 and x2z, the relative error
eaches 100% at about x0�355 m �175.5 times the diameter�.

Similar tests are performed for density-contrast functions such as
�x,z��x, z, x2, z2, x2z2, and x4z4; all distributions result in nonzero

otal mass contrast. For these distributions, the distance from the
ource at which the relative error reaches 100% is 8100 m for
�x,z��x or z, 6930 m for � �x,z��x2 or z2, 370 m for � �x,z�
x2z2, and 31 m for � �x,z��x4z4. These tested density-contrast

unctions and the corresponding ranges of numerical stability �rela-
ive error �100%� are summarized in Table 1; we can see that terms
f nonzero total mass contrast of higher order have similar ranges of

able 1. Ranges of numerical stability for the ST analytic
lgorithm for various density-contrast distributions for a
quare object ˆ†x,z‡:�1�x,z��1‰. The diameter of the
arget is approximated as 2 m.

�x,z�
Range of stability
�unit: diameter of target� Total mass contrast

or z x0 �4050 Zero

z x0 �187 Zero
2 or z2 x0 �3465 Nonzero

z2 or x2z x0 �177.5 Zero
2z2 x0 �185 Nonzero
3z3 x0 �16.5 Zero
4z4 x0 �15.5 Nonzero
5z5 x0 �5 Zero

quation 41 x0 � 5000 Nonzero

quation 42 x0 � 5000 Nonzero
Downloaded 13 Mar 2010 to 69.144.28.204. Redistribution subject to S
umerical stability. For instance, x2z2 �nonzero mass contrast� has a
imilar range of numerical stability as xz, xz2, and x2z �zero mass
ontrast�; likewise, x4z4 has a similar range of stability as x3z3.

To test the stability of the density-contrast function of multiple
erms, I use the two density-contrast functions �equations 41 and 42�
or the same square object, ��x,z�:�1�x,z��1�. Figure 3a shows
he gravity anomaly versus the x-coordinate of the observation
oints along line z�x in the first quadrant, using the analytic meth-
d for the two density-contrast distributions. Figure 3b shows the
ogarithm of the relative error to base 10, where the exact value at
ach station is calculated using the numerical integration �Simpson
lgorithm� for each density-contrast distribution. The gravity anom-
ly at point �2,2� is intercalibrated between the analytic method and
he numerical integration method with a difference of no more than
.6�10�12 mGal for equation 41 and no more than 1.1�10�11

Gal for equation 42. For the calculated range of x0 �up to 5000
imes the diameter of the target�, relative error caused by numerical
nstability does not reach 100%. The range of stability exceeds 5000
imes the diameter of the target for both cases �Table 1�. For the test-
d range between x0�2 m, x0�10,000 m, the maximum absolute
ifference in the calculated gravity anomaly between the analytic
nd numerical methods is 1.8�10�11 mGal for equation 41 and 1.7
10�11 mGal for equation 42. For both cases, instability occurs
ith relative error varying in the range of 10�7 to 10�14, which is ob-
iously negligible.

VERIFICATION OF ANALYTIC SOLUTION

To validate the analytic solutions obtained for the gravity anomaly
t any point along the x-axis for an irregular mass body with polyno-
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igure 3. �a� Gravity anomaly calculated by the ST analytic method
or a square object ��x,z�:�1�x,z��1� with density contrast
unctions given by equations 41 and 42. �b� Logarithm of the relative
rror versus the x-coordinate of the observation line. Even when x0

10,000 m �5000 times the diameter of the target�, the relative er-
or caused by numerical instability does not reach 100%.
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Analytic solution of a gravity anomaly I17
ial density contrast function, I compare the results from the above
nalytic solution with those of the line integral �LI� method �Zhou,
008; 2009a� and results by Martín-Atienza and García-Abdeslem
1999�. For this purpose, I consider three cases of the density con-
rast function: �1� a polynomial function of only the horizontal direc-
ion x, �2� a polynomial function of only the vertical direction z, and
3� a polynomial function of x and z.All calculations in the following
xamples are performed at points near the targets and thus within the
ange of numerical stability.

ases with density contrast as a polynomial function
f horizontal direction

For cases with the density contrast depending only on the horizon-
al position Nz�0, equation 1 becomes � �x���i�0

Nx ai0xi. Figure 4
epicts a case studied by Martín-Atienza and García-Abdeslem
1999� and Zhou �2009a�. Figure 4a shows the geometry of a mass
ody with density contrast dependent only on horizontal position x:
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igure 4. �a� Simple geometry of a 2D mass body, with density con-
rast a polynomial function of only horizontal position x: � �x�

0.5�2�10�5x�2�10�8x2. �b� The gravity anomalies along a
ransect on the x-axis �z0�0� calculated using the ST analytic meth-
d, the LI with logarithmic kernel �Zhou, 2009a�, and the results by
artín-Atienza and García-Abdeslem �MA & GA� �1999�. �c� The

ifference in calculated gravity anomalies using the ST analytical
ethod and the LI method �Zhou, 2009a�.
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� �h�x��0.5�2�10�5x�2�10�8x2. �39�

igure 4b compares the gravity anomaly calculated along transect
n the x-axis �z0�0� using the analytic method, the LI method
Zhou, 2009a�, and results by Martín-Atienza and García-Abdeslem
1999�. The results from the LI method were calculated with the
umber of nodes for Gaussian quadrature k�20 at 41 stations. To
void divergence from singularity when the observation point is co-
ncident with vertices of the polygonal mass body during calcula-
ion, an infinitesimal circle of radius of 10�15 m is excluded from cal-
ulation at singularity points. From Figure 4b, we see that the three
ethods agree very well.
Figure 4c shows the difference between the seminumerical calcu-

ation using the LI method �Zhou, 2009a� and the analytic method.
or stations away from the mass source �x 	 �2 km and x � 1 km�,

he difference between the LI method and the analytic method is
maller than 4.2�10�7 mGal. The maximum difference between
he two methods is 0.0087 mGal, occurring at the origin �x�0 km�.
he difference results from the singularity in both methods. When

he calculation point locates at the vertices of the mass polygon, sin-
ularity occurs in both methods; when the calculation point locates
t the edges but between vertices, singularity occurs in the LI meth-
d. The calculation is performed at points near the mass source, so no
umerical instability occurs.

ases with density contrast as a polynomial function
f vertical direction

For cases with the density contrast depending only on the vertical
osition Nx�0, equation 1 becomes � �z��� j�0

Nz a0jzj. Figure 5
hows a case studied by Zhou �2008� using LI with arctangent kernel
nd with algebraic kernel. Figure 5a shows the geometry of a mass
ody with density contrast dependent only on vertical position z:
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igure 5. �a� Polygon contour of a 2D mass. The model represents
he 2D cross section of an elongated sediment valley, with sedimen-
ary density contrast a polynomial function of vertical depth only:
�z���0.7�2.548�10�4 z�2.73�10�8z2 g /cm3. �b� Gravi-

y anomalies calculated using the LIs with arctangent kernel and al-
ebraic kernel �Zhou, 2008� compared with those calculated using
he ST analytic method.
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I18 Zhou
� �v�z���0.7�2.548�10�4z�2.73�10�8z2,

�40�

here � �v�z� is in g/cm3, and z is in m. Figure 5b compares the
ravity anomaly calculated along transect on the x-axis �z0�0� us-
ng the analytic method, LI with arctangent kernel, and LI with alge-
raic kernel �Zhou, 2008�. The results from the LI methods were cal-
ulated with the number of nodes for Gaussian quadrature k�30 at
7 stations.

From Figure 5b, we can see that the three methods agree very
ell. The maximum difference between the LI methods �LIs with
oth arctangent kernel and with algebraic kernel� and analytic meth-
d is 1.24�10�14 mGal occurring at the station of x�1200 m. Ex-
ellent agreement is observed even at stations within the source re-
ion �0 	 x 	 1800 m� when the density contrast depends only on
epth.

ases with density contrast as a polynomial function
f horizontal and vertical positions
For more general cases with density contrast varying with the hor-

zontal and vertical positions, I consider the following case studied
y Martín-Atienza and García-Abdeslem �1999� and Zhou �2009a�.
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igure 6. �a� Geometry of an irregular mass body, representing fold-
d and overturned strata in a sedimentary basin. The density contrast
s � �x,z���0.7�5�10�8xz�4�10�8x2�6�10�8z2. �b� The
ravity anomalies calculated using the ST analytic method, the LI
ith logarithmic kernel �Zhou, 2009a�, and the results by Martín-
tienza and García-Abdeslem �MA & GA� �1999�. �c� The differ-

nce in calculated gravity anomalies using the analytic and the LI
ethods �Zhou, 2009a�.
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Figure 6a shows the geometry of an irregular mass body, repre-
enting folded and overturned strata in a sedimentary basin. The den-
ity contrast varies as a polynomial function in the horizontal and
ertical directions:

� �x,z���0.7�5�10�8xz�4�10�8x2�6�10�8z2.

�41�

or this density-contrast model, Nx and Nz are two and the coeffi-
ients are a00��0.7, a02�6�10�8, a11��5�10�8, a20�4
10�8, and a01�a10�a12�a21�a22�0. The boundary of the 2D
ass is approximated as a 26-sided polygon, and the gravity anoma-

y was calculated at 41 stations.
Figure 6b compares the gravity anomaly calculated along transect

n the x-axis �z0�0� using the seminumerical LI method �Zhou,
009a�, results obtained by Martín-Atienza and García-Abdeslem
1999�, and the analytic method. The results using the analytic meth-
d agree very well with the general LI method �Zhou, 2009a� and
hose by Martín-Atienza and García-Abdeslem �1999�.

Figure 6c shows the difference between the general LI method
nd the analytic method. The maximum difference between the two
ethods is 0.0026 mGal, occurring at the station of x�4.5 km.
imilar to the comparison for the case with density contrast as a
olynomial function of the horizontal direction, the main difference
ccurs in the source region ��4 	 x 	 4.5 km�. For stations away
rom the mass source �x 	 �4 km and x � 4.5 km�, the difference
etween the methods is very small �	3.78�10�8 mGal�.
To test if the analytic method works well in calculating the gravity

nomaly on an undulating surface, the case of Figure 8 of Martín-
tienza and García-Abdeslem �1999� is used because the calculated
ravity anomaly data provided by García-Abdeslem are available
or comparison. Figure 7a shows the contour of the mass body that is
ounded by �5000�x��5000 in the x-direction; z1�x��z
z2�x�, where z1�x���100�0.03x�10�6x2�5�10�9x3 and

2�x��3000�0.02x�10�6x2�7�10�9x3. The density contrast is

� �x,z���0.3�5�10�5x�9�10�5z�1.0�10�8x2

�1.0�10�8z2. �42�

he contour of the mass body is divided into 200 segments. Gravity
nomaly is calculated on 100 stations on the top curve z1�x�.

Figure 7b shows the comparison of the gravity anomaly calculat-
d along the curve z1�x� using the seminumerical LI method �Zhou,
009a�, results by Martín-Atienza and García-Abdeslem �1999�,
nd the present analytic method. The results using the analytic meth-
d agree very well with the general LI method �Zhou, 2009a� and
hose by Martín-Atienza and García-Abdeslem �1999� on the undu-
ated curve.

Figure 5c shows the difference between the analytic method and
he general LI method and between the analytic method and the re-
ults by Martín-Atienza and García-Abdeslem �1999�. The maxi-
um difference between the analytic method and the general LI
ethod is 1.63�10�4 mGal. The maximum difference between the

nalytic method and the results calculated by Martín-Atienza and
arcía-Abdeslem �1999� is 0.0576 mGal. The results from the ana-

ytic and LI methods are very close.
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Analytic solution of a gravity anomaly I19
CONCLUSIONS

For the density contrast of an irregular 2D mass body approximat-
d as a polynomial function, which is usually a least-squares fitting
o the density logging data, we expand the closed-form solution at
he origin to any station by reformulating the solution, while keeping
he density-contrast profile and the geometry intact, or transforming
he coordinate system. The closed-form solution for any surface sta-
ion is then programmable to calculate gravity anomaly, rather than
y dividing the source mass into columns and using a 1D vertical
ensity-contrast model to calculate the gravity at any station. The
ource codes of some computer programs used to generate relevant
gures in this paper are available upon request.
Singularity occurs in the arctangent and natural logarithm func-

ions in the analytic solution when the observation points are coinci-
ent with the vertices of the polygonal mass body. An infinitesimal
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igure 7. �a� Geometry of an irregular mass body, represen-
ing uneven top surface where calculation is made. Density con-
rast is � �x,z���0.3�5�10�5x�9�10�5z�1.0�10�8x2

1.0�10�8z2. �b� Gravity anomalies calculated using the ST ana-
ytic method, the LI �Zhou, 2009a�, and the results by Martín-
tienza and García-Abdeslem �1999�. �c� Difference in calculated
ravity anomalies between the ST analytic and LI methods �Zhou,
009a� and between the ST analytic method and Martín-Atienza and
arcía-Abdeslem �1999�.
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ircle around each singular point is excluded from calculation to
void divergence in numerical calculation. Case studies show that
umerical instability occurs in the analytical method but not in direct
umerical integration using the Simpson method. The range of nu-
erical stability is defined as the distance from the source mass cen-

er to the observation point when the relative error reaches 100%. It
s dependent on specific questions but generally decreases for terms
f higher order in the polynomial density-contrast function. Com-
ared with single terms in the polynomial function of the density
ontrast, instability seems to be suppressed for a polynomial of mul-
iple terms owing to cancellation of errors from individual terms, re-
ulting in negligible errors within a range of 5000 times the size �di-
meter� of the target.

The complete set of analytic equations was tested through com-
arison with other numerical or seminumerical methods. The analyt-
c method agrees very well with other methods when the observation
oints are within the range of numerical stability, which is usually
he case for the ground gravity survey. This indicates that within the
ange of numerical stability, my closed-form solution is accurate and
an be used for irregular 2D mass bodies when the density contrast
an be approximated as a polynomial function in horizontal and/or
ertical positions. However, caution should be exercised in model-
ng or interpreting the gravity-survey data using the analytic meth-
ds when the target distance is outside the range of numerical stabili-
y. For distant targets, a switch from analytical method to numerical
ntegration may be necessary for accuracy.
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