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Analytic solution of the gravity anomaly of irregular 2D masses
with density contrast varying as a 2D polynomial function

Xiaobing Zhou

ABSTRACT

The analytic solution of the gravity anomaly caused by a
2D irregular mass body with the density contrast varying as a
polynomial function in the horizontal and vertical directions
is extrapolated from a historical version in which the analytic
solution for the gravity anomaly was given only at the origin
of the coordinate system to any point for the density function
in terms of variables relative to that origin. To calculate the
gravity anomaly at stations that are not at origins, a coordi-
nate transformation is performed, in which case the polyno-
mial density contrast function must also be expressed in the
transformed coordinates, or a transformed solution must be
obtained. These analytic solutions can be obtained at any sta-
tion using (1) a solution transformation method, in which the
density function and boundary of a mass body are kept intact,
or (2) a coordinate transformation method, in which polyno-
mial coefficient and boundary of a mass body are trans-
formed accordingly. The issue of singularity and instability
of the analytic methods has been related to case studies. Cau-
tion should be exercised in modeling or interpreting the grav-
ity survey data using the analytic methods for large target-
distance-to-target-size ratios outside the range of numerical
stability. Compared with other published methods, the ana-
lytic solution results agree very well with other numerical or
seminumerical methods, indicating the solution is correct
and can be applied for any gravity anomaly calculation
caused by an irregular 2D mass body with the density-con-
trast approximated as a polynomial function of horizontal po-
sition and/or vertical position when the observation is within
the range of numerical stability.

INTRODUCTION

Gravity exploration requires high accuracy and speed in gravity
forward modeling and inversion so that the gravity anomaly can be
accurately modeled and subsurface geologic structure can be accu-

rately inversed from survey data. An analytic (also called closed-
form) solution of the gravity anomaly caused by a specific mass
body is often vigorously pursued. However, a closed-form solution
is usually very difficult to find. In this article, I give an analytic solu-
tion at any point in space for a 2D polygon mass body with density
contrast varying in a polynomial function of horizontal x, vertical z,
orxandz,i.e.,

Ny N,

o(x,z) = 2 2 ajj X7,

i=0j=0

(1)

where o (x,z) is the density contrast at source point (x,z), constants
a;; are the coefficients of the polynomial, and N, and N, are the maxi-
mum power of x and z, respectively.

This problem has been studied by Zhang et al. (2001). Zhou
(2009b) corrects some errors in Zhang et al.’s (2001) solution when
the density model includes coordinate x and gives a complete set of
equations that are programmable to provide the gravity anomaly at
the origin. However, the closed-form solution in these studies is val-
id and useful for the gravity-anomaly calculation only at the origin.
For the gravity-anomaly calculation at a station that is not at the ori-
gin, the formulation in these studies can be obtained through (1) a co-
ordinate transformation (CT) to make the station the origin of the
new coordinate system so the solution at origin can be directly used
or (2) a solution transformation (ST), in which the solution at any
point is obtained without transforming the coordinate system. To
make the solution at the origin usable for any observation pointin the
option of coordinate transformation, the density contrast in the new
coordinate must be expressed as a polynomial function, too. For a
specific mass source model of defined density-contrast profile and
the geometry, a coordinate transformation is performed for each sta-
tion, resulting in a new density-contrast profile and geometry.

In the following discussion, the ST method is discussed first, fol-
lowed by the CT method. For the ST method, the solution at origin is
extrapolated to a solution at any point, keeping the density-contrast
function and the geometry of the mass body intact. A complete set of
analytic equations is thus obtained that can be programmed for cal-
culating the gravity anomaly when the density contrast is a polyno-
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mial function of both x and z, with cases in which the density contrast
is a polynomial function in either direction as special cases. For the
CT method, the polynomial coefficient of the density function and
the geometry of the source body are transformed accordingly. The
solution at origin (Zhou, 2009b) is expressed in the original coordi-
nate system, so the forward modeling for a gravity survey can be au-
tomated using the survey coordinate system (original system). Sin-
gularity and numerical instability are then discussed, followed by al-
gorithm validation using case studies and comparison for the analyt-
ic solutions by both methods. The following is based on Zhang et al.
(2001) and Zhou (2009b), and most of the notations are the same as
in those two articles.

ANALYTIC SOLUTION

I first discuss the analytic solution obtained by the ST method.
Consider a geometry and coordinate system set up as in Figure 1.
The gravity at any station P(x,2o) along the x-axis (equation 5 of
Zhang et al., 2001) for the vertical component of a gravity anomaly
caused by a 2D mass becomes

x'7/(z — z0)
Ag.(x0.20) = 2G§0JEO i f f L
(2)
Consider the following identities:
x'7/(z — z)
(x = x0)* + (2 = 2)?
_ [(x — x0) + xo)[(z — 20) + 20V (2 — 20)
(x — xo) +(z = 29)?
_ me_ \m n n O)iin(z_Z )j7m+]
E C (ZO) "; C O) ( x0)2 + (Z —z )2
3)

where C} and C7' are the binomial expansion coefficients. An equa-
tion similar to equatlon 6 of Zhang et al. (2001) can be then obtained:

P (Xoy

I

0 (0,0)

(X, Z)

(Xk 15 Zpan)

V4

Figure 1. A schematic for the gravity anomaly at a general point
P(x0,20) resulting from a 2D mass of polygon with density contrast
in the form of a polynomial function of x and z.
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(x_xo)ifn(z_zo)jferl B 1
(x — x0)> + (z — 20)° i+j—m
i (x _Xo)ifn+1(Z _ ZO)j7m+1
0x

(x —x0)* + (z — 2)?

—-n+1

d | (x—x0) "z —z0) "2
+ 2 2 )
0z (x = x0)” + (z = z9)
Therefore,
2z — A, A
x'7(z — zo) _ A 9A; 5)

(x — x0)* + (z — z0)* 9z dx

where the 2D vector gravity potential A takes the form (Zhou, 2008)

( i ;
1
0= 2 GG 2 G e
()C _xo)lfn(z —z )]7m+2
< (x—xo) +(z—z)?
m m 7 n 1
——EC(z)EC(xo) —
(x_xO)z—n+l(Z_Z0)]—m+l
\ (x —x0)” + (z — 2)*

(6)

Applying Stokes’ theorem to equation 2,

x'7/(z — zp)
f f (=l + (= 2P

ff<_——>dxdz f(Ade‘/'Azdz), (7)

The vertical component of a gravity anomaly at station P(x,z,) be-
comes

Ag . (xp,20) =

N, J
2 2_ m(Zo)m

i M‘«Z

E Cf’(x )n

n_oltj—m—n+1

(x — x0) "z — zo)) T T2
X(fc C—x)+—zf
(x—xo)i"+'(z—10)jm+ldz)’ ®)

(x —x0)* + (z — 20)*

X

C

where §. denotes counterclockwise integration along the contour of
the 2D mass body (see Figure 1), which is approximated by an
N,-sided polygon. After integration along the boundary of the
N,-sided polygon, equation 8 can be rewritten as
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N, N, j
Ag.(xp,20) = 2 E E CT(Zo)m
i=0j=0 m=0
i Cj (x)"
E(, k
Shitj—m —n+1,§1 (Ejam k)
9)

where E(i,j,m,n,k) is the integral along the kth segment counter-
clockwise from vertex (x;,z;) to vertex (x;; 1,2+ 1) (see Figure 1):

s i +1 j +1
Y —x i—n 7—2 j—m
By = | SRl e a)
(x —xp)" + (z—z0)

dz

%%
Xk+1 ) )
J (x_xo)l—n(z_zo)j—n1+2

(x —x0)* + (z — 29)*

dx.
Xk

(10)

Comparing equation 9 above with equation 9 of Zhang et al. (2001),
we can see that reduction from the former to the latter is done by set-
ting xo = 0 and zo = 0.

Now following Zhou (2009b), we consider whether the kth seg-
ment is parallel to the z-axis. When the kth segment is not parallel to
the z-axis, i.e., X, # X + 1, the line equation for the kth segment is

z=px+q, (11)
_ Zk+1 — Zk (12)
Xk+1 _xk’

 ZXk+1 T Tk 1%k (13)
Xe+1 — Xk

Inserting equation 11 into equation 10 and transforming the first in-
tegral in equation 10 from z to x, then coalescing the two integrals
into one, equation 10 becomes

E(i,j,m,nk)
K+ 1
(pxo+q—z20)(x —x0)' "(px+q—z0) "'
(1+ p?)x® + 2[plg — o) — xolx + [x5 + (g — ZO)Z]

Xk

(14)
After using the binomial theorem and reorganization, it yields
i—nj—m+1
E(i,j,m,n,k) - (p-xO + q— ZO) 2 2 Cl n J m+1
I,=0 1,=0
X p/ 7t (= x) (g — z9)"
X it jmm—n—t, 1,41 (15)
where,when{ =i+j—m—n—10,—-1L+1,

X+ 1 xf
I, = ——dx, 16
¢ fcx2+bx+a * (16)
Xk

witha = x2 + (g — 20)% b = 2[p(q — 20) — xo),andc = 1 + p*.

Let’s define Q =4ac — b*=4(pxo+ g — 20)>=0. Two cases
need to be considered: Q =0 and Q > 0. For Q =0, i.e., pxo + ¢
— zo = 0, equation 15 becomes

E(i,jm,nk) = 0. (17)

With Q > 0, the integral in equation 16 is recursive because

X" xn—l b xn—l
Sdx = - = ————dx
a+ bx+cx (mn—1)c c¢J) a+bx+cx

a xn—2
e[,
c) a+bx+cx

(Beyer, 1984). The series of the recursive integrals is given as

_ ! (tan—l (1+ P11+ plg = 20) = o
lpxo + g — 2| lpxo + g — 2|
1+ pHx, + —2p) — X
lpxo + g — 2|
1 re1 Plg—29) — X
I, = n — Iy, 19
! (1+p? I 1+p° 0 (19)
1 -1 -1
ly=——"""""—(x ., —x
Tl e T
2[19(6] — Zo) — xo] (g — 20+ X(z)
Loy — 51— (20)
1 +p 1+p
where
_ R RV
P = N1 — x0)” + (Zx+1 — 20)
and
re= V0 — x0) + (3 — 20)°
(see Figure 1).

When the kth segment is parallel to the z-axis, i.e., Xy = X341,
equation 10 for the E(i,j,m,n,k) function is given by
E(ijmnk) = (= x0) " K0, (21)
where, when{ = j —m + 1,K;_,, . is given by

Tk+1
(z—2)"

f (g —x0)* + (2 — Zo)zd

(22)

From equation 3, for j =0, I have m =0; for j=1, I have m
=0,1,...,j. The range of the value of the index € of K is from zero
to j + 1. Without loss of generality, the series of the recursive inte-
grals for K, can be found by setting m = 0. For j = O with € = 1,
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K = 1n<ﬂ). (23)

Forj = 1with€ = 2,

Zk+1— Zo)
|xk _xo|

_ —1l %k — %o
tan <—|Xk — xo| )) . (24)

Using equation 24 of Zhang et al. (2001) for € =2, the recursive inte-
gral equation 22 becomes

Ky = (a1 —2) = I — x0|(tan_l(

K¢ = Tl[(zk+l —20) 7 = (207 ']

t
— (3 — x0)* K. (25)

Now equations 9, 15, 17-21, and 23-25 form a complete set of ana-
Iytic equations for the gravity-anomaly calculation at any point
P(x0,20) in the x-z-plane outside the mass body based on the ST
method.

Let’s consider the analytic solution obtained by the CT method.
Assume the observation point is (x,2o) in the original survey coordi-
nate system (x,z) from which the solution at the origin has been for-
malized (Zhang et al., 2001; Zhou, 2009b). To make the observation
point the origin of the new coordinate system (x',z'), we perform a
coordinate transformation:

x'=x—x (26)
' =z-2z. (27)

Under such a coordinate transformation, the density contrast is ex-
pressed as a polynomial function in the new coordinate system, i.e.,

N
2 DY, (28)

Il
n M&z

Ny N,
= 2 Eaz]xlzj
i=0j=0

where the new coefficient aj; is given as

Ny z
ar” _ E 2 amnCl C] m—i n,, (29)

m=in=j

Correspondingly, the geometry of the mass source in the new coordi-
nate system is obtained through equations 26 and 27. Then the solu-
tion at the origin of the new coordinate system (Zhou, 2009b) is ex-
pressed in the original survey coordinate system so that the forward
modeling for a survey at any number of stations can be automated,
ie.,

N, N,

SIDIP +—L E E(i,jk). (30)

Ag(xo,20) =
i=0j=0! + 1.2

When the kth segment is not parallel to the z-axis, i.e., X; # X4 1,
then E(i,j,k) in equation 30 is given by

E(i,j,k)

0, for ¢’ =0,
J+1
_ 2 C§+1piil+l(ql)l+11/i+j—l+1’ for q’#O,
=0
(31)
Z/kxl _Z/ xl
k+1 k+1% k
q’ = r+ r+ =g+ pxo— 20, (32)
Xgr1 T Xk

where p and ¢ are given by equations 12 and 13. The integrals
I, ;_;+ inequation31 are

i

I'y=1. (33)
I'y =1, = xoly, (34)
I'y= %[(xk+l —x0) T = (g —x) 1]
(=D +p9)
’ "2
- lziqu 1~ 1(3_—)1)2[,62» (€>1), (35)

where I, and /, are given by equations 18 and 19.
When the kth segment is parallel to the z-axis, i.e., x; = x;+ 1, then
E(i,j k) inequation 30 is given by

E(l’]’k):( _XO) ]+1’

where K, (¢ =j+1=1,2,3,...) are given by equations 23-25.
Now equations 29-35 form a complete set of analytic equations for
the gravity-anomaly calculation at any point P(xyz,) in the
x-z-plane outside the mass body that are obtained from the CT meth-
od based on the solution at the origin (Zhou, 2009b).

SINGULARITY AND NUMERICAL INSTABILITY

When the observation point is coincident with the vertices of the
geometry of the mass body, singularity occurs, resulting in calcula-
tion errors. When the kth segment is not parallel to the z-axis, i.e., x;
# X+ 1, singularity occurs in the argument of the natural logarithm
function in equation 19 that is used for the analytical methods ob-
tained by the ST and CT methods (see equations 19 and 34). How-
ever, singularity will not appear in the argument of the arctangent
function in equation 18 because when px,+ ¢ —zo=0, then
E(i,j,m,n,k) is given by equation 15. When the kth segment is paral-
lel to the z-axis, i.e., x; = x;+1, and the observation point is coinci-
dent with the vertices of the geometry of the mass body, singularity
occurs in the arguments of the arctangent and natural logarithm
functions in equations 23 and 24 that are used for both analytical so-
lutions.

In either case, the arctangent or natural logarithm function is a
multivariate function. There is no I’ Hopital’s rule for finding the lim-
it of a multivariate function, so the limit is discovered by allowing
the observation point (x,,z9) to approach the vertex (x;,z;) or
(¢ 1,2%+ 1) along any curve that passes through (x;,z;) or (x4 1,244 1)-
Often, itis easier to show that a limit does not exist by demonstrating
that the limit has different values, depending on the curve used. For
the natural logarithm function in equations 19 and 23, limit does not
exist as the observation point (x,,zo) approaches the vertex (x,z;) or

(Xps 152k 41)-
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Analytic solution of a gravity anomaly 115

For the arctangent function in equation 24, consider the case when
the observation point (xo,zo) approaches the vertex (x;,z;). Assume
the approach is along the curves z, — z; = S(xo — x;) through the
vertex (x,zx), where S is the slope,

. %% — 2 . S(xo —x0)
lim — | =— lim EE—
(x020) = (xp20) |xk - x0| (x0-20) = (xp20) |x0 - xk|
= —S-sgn(xy— xp). (36)
Here, the sign function sgn(x) is defined as
) —1 for x<0
sgnix) =

& +1 forx>0

The limit of (z; — zo)/|xx — xo| is dependent on S as observation
point (xy,zo) approaches the vertex. This means the limit of (z
— 20)/|x¢ — xo| does not exist, so neither does tan~'((z;, — zo)/| X,
- xo|)~

When gravity stations are at a vertex of the mass polygon, singu-
larity occurs because the log and arctangent functions are undefined.
A convenient and practical way to remove the singularity is to use
the exclusive infinitesimal sphere method to avoid divergence in nu-
merical computation (Zhou, 2009¢) because the values on the sur-
face of the exclusion are very similar and the anomaly is continuous
across the surface. Although the logarithm function passes through
an infinite singularity, it has a multiplier that tends to zero, rendering
the overall value finite. The same goes for the arctangent function.
The gravity anomaly at the vertex is thus defined. Generally, the ra-
dius of the exclusive infinitesimal sphere can be specified as &
= uR,, where u is a dimensionless, infinitely smaller number and
R,, is the maximum size of the mass body. In the following discus-
sion, an exclusive infinitesimal circle with a radius of 107" m
around the singular point is used to calculate the arctangent and natu-
ral logarithm functions.

Numerical stability is a desired property of any algorithm. How-
ever, numerical calculation is often contaminated by numerical in-
stability; small errors from round-off or truncation can be magnified,
leading to large errors — even though the mathematics in the algo-
rithm development are perfect. To evaluate the stability of the ana-
lytic algorithm developed above, consider a square object {[x,z]:
—1=x,z= + 1} with density contrast

o(xz) =7, 37)

where o (x,z) is in g/cm? and where x and z are in meters (units are
consistent for o, x, and z unless otherwise noted). For such an object,
the total mass contrast is zero: Am = [*}dx[*|dzx’z* = 0. The parts
of the object in the first and third quadrants have positive mass densi-
ty contrast, and the parts in the second and fourth quadrants have
negative mass density contrast. This means (1) the gravity anomaly
at points close to the object along line z = x in the first quadrant
should have positive gravity anomaly and (2) the gravity anomaly at
an observation point far from the object should approach zero as the
distance from the object increases. From equation 2, the gravity
anomaly at any observation point outside the object is

141
X2z — zp)

A Z0) = —2G dxdz,
g:lxo-0) fJ(x—xo)er c—z)
-1 -1

(38)

where the negative sign is from the opposite direction of gravity to
the direction of z-axis in the coordinate setup.

Three methods are used to calculate the gravity anomaly at points
along line z = x at a length interval of \2 from point (2,2) to point
(100,100): the analytic algorithms based on the ST and the CT meth-
ods and the direct numerical integration of equation 38 using the
Simpson algorithm with variable steps. The computation is per-
formed on a Dell Optiplex GX 620 desktop computer. Test runs
show that all methods work very well for points close to the object.
Thus, the gravity anomaly at point (2,2) is used for intercalibration
among the three algorithms; all methods produce the gravity anoma-
ly at point (2,2) with a difference of no more than 1.5 X 10~'2 mGal.
The difference between the ST and CT analytic algorithms at point
(2,2)is 1.6 X 107! mGal.

Figure 2a compares the gravity anomaly versus the x-coordinate
of the observation points calculated by the three methods. Instability
does not occur for the numerical integration using the Simpson algo-
rithm within the calculation range (x,C[2,100]). Figure 2b shows
the logarithm of relative error to base 10 versus the x-coordinate of
the observation points, where the result at each station calculated us-
ing the numerical integration is used as the exact value for the rela-
tive error calculation. When the logarithm of the relative error reach-
es zero, we have a 100% relative error. For this example, the 100%
relative error occurs at x, = 33 m (16.5 target diameters) for the ST
method and at x, = 32 m (16 target diameters) for the CT method. To
achieve arelative error of 107, we need to be within 5.5 target diam-
eters for both the analytic methods.

a) 1.5E-04-

1.3E-04 1 Analytic - ST

—— Simpson
11E-044 VL Analytic - CT
9.0E-05

7.0E-05
5.0E-05 1
3.0E-05
1.0E-05 -
—1.0E-05
—3.0E-05
—5.0E-05

b) 601
Relative error - ST
409 -eeeeees Relative error - CT

Gravity anomaly (mGal)

2.01

0.0 1

-2.0

Log,, (relative error)

-4.0

—6.0 4

1.0 o 100 o 1000
x-coordinate of the observation line z, = xo (M)

Figure 2. (a) Gravity anomaly calculated by the analytic solutions
obtained using the ST and CT methods and numerical integration
using the Simpson algorithm for a square object {[x,z]: —1=x,z
= +1} with density contrast o (x,z) = x*z%. (b) Logarithm of the rel-
ative error versus the x-coordinate of the observation line for the ST
and CT algorithms.
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The target distance within which the relative error is within 100%
is referred to as the range of numerical stability of the algorithm. The
magnitude of fluctuation increases with increasing target distance
when the relative error reaches 100% (Figure 2a) for both analytic
methods. The maximum difference between the ST and CT methods
within the calculation range (x,C[2,100]) is 2.1 X 1075 mGal, oc-
curring at x, = 93 m — well beyond the range of numerical stability
of both algorithms. Within the range of numerical stability of 16 tar-
get diameters, the maximum difference between ST and CT methods
is less than 1.6 X 10~® mGal. The difference between the ST and
Simpson methods (absolute value) exceeds 1.0 X 10~7 mGal when
Xo > 42 m (21 times the diameter of the target); the difference be-
tween the CT and Simpson methods exceeds 1.0 X 10~7 mGal when
Xo > 39 m (19.5 times the diameter of the target).

The actual values above are problem-dependent. These compari-
sons and Figure 2 show that results from the ST and CT methods are
very similar. Also, singularity that occurs in the arctangent and natu-
ral logarithm functions in equations 19, 23, and 24 is the same for the
ST and CT methods. Thus, in the following discussion, only results
from the ST method are shown.

Further tests between the ST and Simpson methods are performed
for density-contrast functions such as o (x,z) = xz, xz2, x’z, and x°7°
so that all distributions result in zero total mass contrast. Instability
occurs for all distributions. Relative error reaches 100% at shorter
distances from the source for higher-order distributions. For in-
stance, the relative error exceeds 100% at about x, = 374 m (187
times the diameter) for lower-order term xz, but for the higher-order
term x°z°, the relative error reaches 100% at about x, = 10 m (five
times the diameter). For distributions xz? and x?z, the relative error
reaches 100% at about x, = 355 m (175.5 times the diameter).

Similar tests are performed for density-contrast functions such as
o(x,2) = x, z, X, 72, x?z%, and x*z*; all distributions result in nonzero
total mass contrast. For these distributions, the distance from the
source at which the relative error reaches 100% is 8100 m for
o(x,z) = x or z, 6930 m for o(x,z) =x% or z2, 370 m for o(x,z)

= x?z%, and 31 m for o(x,z) = x*z*. These tested density-contrast
functions and the corresponding ranges of numerical stability (rela-
tive error = 100%) are summarized in Table 1; we can see that terms
of nonzero total mass contrast of higher order have similar ranges of

Table 1. Ranges of numerical stability for the ST analytic
algorithm for various density-contrast distributions for a
square object {[x,z]: —1=x,z= +1}. The diameter of the

target is approximated as 2 m.

Range of stability

o(x,z) (unit: diameter of target)  Total mass contrast
X or z Xo=4050 Zero

Xz xXo=187 Zero

x? or z* Xo=3465 Nonzero
xz% or xz X, =177.5 Zero
X222 xo=185 Nonzero
X373 x=16.5 Zero
xizt x=15.5 Nonzero
X373 X0=5 Zero
Equation 41 Xxo > 5000 Nonzero
Equation 42 x, > 5000 Nonzero

Zhou

numerical stability. For instance, x?z% (nonzero mass contrast) has a
similar range of numerical stability as xz, xz%, and x’z (zero mass
contrast); likewise, x*z* has a similar range of stability as xz>.

To test the stability of the density-contrast function of multiple
terms, I use the two density-contrast functions (equations 41 and 42)
for the same square object, {[ x,z]: —1 =x,z= + 1}. Figure 3a shows
the gravity anomaly versus the x-coordinate of the observation
points along line z = x in the first quadrant, using the analytic meth-
od for the two density-contrast distributions. Figure 3b shows the
logarithm of the relative error to base 10, where the exact value at
each station is calculated using the numerical integration (Simpson
algorithm) for each density-contrast distribution. The gravity anom-
aly at point (2,2) is intercalibrated between the analytic method and
the numerical integration method with a difference of no more than
3.6 X 107> mGal for equation 41 and no more than 1.1 X 107!
mGal for equation 42. For the calculated range of x, (up to 5000
times the diameter of the target), relative error caused by numerical
instability does not reach 100%. The range of stability exceeds 5000
times the diameter of the target for both cases (Table 1). For the test-
ed range between x, = 2 m, xo, = 10,000 m, the maximum absolute
difference in the calculated gravity anomaly between the analytic
and numerical methods is 1.8 X 10~!! mGal for equation 41 and 1.7
X 107" mGal for equation 42. For both cases, instability occurs
with relative error varying in the range of 107 to 104, which is ob-
viously negligible.

VERIFICATION OF ANALYTIC SOLUTION

To validate the analytic solutions obtained for the gravity anomaly
at any point along the x-axis for an irregular mass body with polyno-

0.002

&0
~—

0.000 -

-0.0024 7~ . Equation 41

Equation 42

—0.004 -

-0006{

Gravity anomaly (mGal)

—0.008 -

-0.010 L e B aaisl

=
~
w

,,,,,,,, Relative error - Equation 41

Relative error - Equation 42

Log,, (relative error)
|
[
1

1 10 100 1000 10000

x-coordinate of observation line zo= xo (M)

Figure 3. (a) Gravity anomaly calculated by the ST analytic method
for a square object {[x,z]: =1 =x,z= +1} with density contrast
functions given by equations 41 and 42. (b) Logarithm of the relative
error versus the x-coordinate of the observation line. Even when x,
= 10,000 m (5000 times the diameter of the target), the relative er-
ror caused by numerical instability does not reach 100%.
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mial density contrast function, I compare the results from the above
analytic solution with those of the line integral (LI) method (Zhou,
2008; 2009a) and results by Martin-Atienza and Garcia-Abdeslem
(1999). For this purpose, I consider three cases of the density con-
trast function: (1) a polynomial function of only the horizontal direc-
tion x, (2) a polynomial function of only the vertical direction z, and
(3) apolynomial function of x and z. All calculations in the following
examples are performed at points near the targets and thus within the
range of numerical stability.

Cases with density contrast as a polynomial function
of horizontal direction

For cases with the density contrast depending only on the horizon-
tal position N, = 0, equation 1 becomes o (x) = =" ja,x'. Figure 4
depicts a case studied by Martin-Atienza and Garcia-Abdeslem
(1999) and Zhou (2009a). Figure 4a shows the geometry of a mass
body with density contrast dependent only on horizontal position x:
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Figure 4. (a) Simple geometry of a 2D mass body, with density con-
trast a polynomial function of only horizontal position x: o (x)
=0.5+2X107%%x — 2 X 10~8x2. (b) The gravity anomalies along a
transect on the x-axis (zo = 0) calculated using the ST analytic meth-
od, the LI with logarithmic kernel (Zhou, 2009a), and the results by
Martin-Atienza and Garcia-Abdeslem (MA & GA) (1999). (c) The
difference in calculated gravity anomalies using the ST analytical
method and the LI method (Zhou, 2009a).

c=h(x)=05+2X107x—2X107%2.  (39)

Figure 4b compares the gravity anomaly calculated along transect
on the x-axis (zo=0) using the analytic method, the LI method
(Zhou, 2009a), and results by Martin-Atienza and Garcia-Abdeslem
(1999). The results from the LI method were calculated with the
number of nodes for Gaussian quadrature k = 20 at 41 stations. To
avoid divergence from singularity when the observation point is co-
incident with vertices of the polygonal mass body during calcula-
tion, an infinitesimal circle of radius of 107> mis excluded from cal-
culation at singularity points. From Figure 4b, we see that the three
methods agree very well.

Figure 4c shows the difference between the seminumerical calcu-
lation using the LI method (Zhou, 2009a) and the analytic method.
For stations away from the mass source (x < —2 kmandx > 1 km),
the difference between the LI method and the analytic method is
smaller than 4.2 X 1077 mGal. The maximum difference between
the two methods is 0.0087 mGal, occurring at the origin (x = 0 km).
The difference results from the singularity in both methods. When
the calculation point locates at the vertices of the mass polygon, sin-
gularity occurs in both methods; when the calculation point locates
at the edges but between vertices, singularity occurs in the LI meth-
od. The calculation is performed at points near the mass source, so no
numerical instability occurs.

Cases with density contrast as a polynomial function
of vertical direction

For cases with the density contrast depending only on the vertical
position N, =0, equation 1 becomes o(z) = Ejy; odo;z’. Figure 5
shows a case studied by Zhou (2008) using LI with arctangent kernel
and with algebraic kernel. Figure 5a shows the geometry of a mass
body with density contrast dependent only on vertical position z:

a) 0 200 400 600 800 1000 1200 1400 1600 1800 2000
° x(m)
% 0(2) = —0.7+2.548x10™ z —2.73x10° 22
% 100
? g (220,10
200 (680, 190) (1500, 180)
2501 , (900, 220) (140g, 230)

b) 0 )_M@\C
=] (@M—<
(g o Ll with arctangent kernel
:; =21 - LI with algebraic kernel
£ 4l — Analytical - ST
o
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>
Y
& 54
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Distance along a transect on x-axis (m)

Figure 5. (a) Polygon contour of a 2D mass. The model represents
the 2D cross section of an elongated sediment valley, with sedimen-
tary density contrast a polynomial function of vertical depth only:
o(z) = — 0.7+ 2548 X 107 %z —2.73 X 1078z% g/cm?. (b) Gravi-
ty anomalies calculated using the LIs with arctangent kernel and al-
gebraic kernel (Zhou, 2008) compared with those calculated using
the ST analytic method.
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oc=v(z)= —0.7+2548X10%7 —2.73x 10822,
(40)

where o = v(z) is in g/cm3, and z is in m. Figure 5b compares the
gravity anomaly calculated along transect on the x-axis (zo = 0) us-
ing the analytic method, LI with arctangent kernel, and LI with alge-
braic kernel (Zhou, 2008). The results from the LI methods were cal-
culated with the number of nodes for Gaussian quadrature k = 30 at
27 stations.

From Figure 5b, we can see that the three methods agree very
well. The maximum difference between the LI methods (LIs with
both arctangent kernel and with algebraic kernel) and analytic meth-
od is 1.24 X 107* mGal occurring at the station of x = 1200 m. Ex-
cellent agreement is observed even at stations within the source re-
gion (0 < x < 1800 m) when the density contrast depends only on
depth.

Cases with density contrast as a polynomial function
of horizontal and vertical positions

For more general cases with density contrast varying with the hor-
izontal and vertical positions, I consider the following case studied
by Martin-Atienza and Garcia-Abdeslem (1999) and Zhou (2009a).
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Figure 6. (a) Geometry of an irregular mass body, representing fold-
ed and overturned strata in a sedimentary basin. The density contrast
iso(x,z) = —0.7—5X10"8xz + 4 X 1078x2 + 6 X 107822, (b) The
gravity anomalies calculated using the ST analytic method, the LI
with logarithmic kernel (Zhou, 2009a), and the results by Martin-
Atienza and Garcia-Abdeslem (MA & GA) (1999). (c) The differ-
ence in calculated gravity anomalies using the analytic and the LI
methods (Zhou, 2009a).

Zhou

Figure 6a shows the geometry of an irregular mass body, repre-
senting folded and overturned strata in a sedimentary basin. The den-
sity contrast varies as a polynomial function in the horizontal and
vertical directions:

o(x,z) = —07=5X10"3xz+4 X108 + 6 X 10732
(41)

For this density-contrast model, N, and N, are two and the coeffi-
cients are ag= —0.7, ap=6X1078%, a;; = —=5X1078, a,y=4
X 1078, and ag; = a,p = a1, = a2 = ayp = 0. The boundary of the 2D
mass is approximated as a 26-sided polygon, and the gravity anoma-
ly was calculated at 41 stations.

Figure 6b compares the gravity anomaly calculated along transect
on the x-axis (zo = 0) using the seminumerical LI method (Zhou,
2009a), results obtained by Martin-Atienza and Garcia-Abdeslem
(1999), and the analytic method. The results using the analytic meth-
od agree very well with the general LI method (Zhou, 2009a) and
those by Martin-Atienza and Garcia-Abdeslem (1999).

Figure 6¢ shows the difference between the general LI method
and the analytic method. The maximum difference between the two
methods is 0.0026 mGal, occurring at the station of x = 4.5 km.
Similar to the comparison for the case with density contrast as a
polynomial function of the horizontal direction, the main difference
occurs in the source region ( —4 < x < 4.5 km). For stations away
from the mass source (x < —4 km and x > 4.5 km), the difference
between the methods is very small (<3.78 X 10~® mGal).

To test if the analytic method works well in calculating the gravity
anomaly on an undulating surface, the case of Figure 8 of Martin-
Atienza and Garcia-Abdeslem (1999) is used because the calculated
gravity anomaly data provided by Garcia-Abdeslem are available
for comparison. Figure 7a shows the contour of the mass body that is
bounded by —5000=x= + 5000 in the x-direction; z,(x)=z
=2(x), where z;(x) = —100 + 0.03x + 10%x% + 5 X 10™%x* and
72(x) =3000 — 0.02x — 107%x> — 7 X 10 x3. The density contrast is

o(x,z) = —03—-5X107x+9X 1077z — 1.0X 10782
+1.0X 107822, (42)

The contour of the mass body is divided into 200 segments. Gravity
anomaly is calculated on 100 stations on the top curve z;(x).

Figure 7b shows the comparison of the gravity anomaly calculat-
ed along the curve z,(x) using the seminumerical LI method (Zhou,
2009a), results by Martin-Atienza and Garcia-Abdeslem (1999),
and the present analytic method. The results using the analytic meth-
od agree very well with the general LI method (Zhou, 2009a) and
those by Martin-Atienza and Garcia-Abdeslem (1999) on the undu-
lated curve.

Figure 5¢ shows the difference between the analytic method and
the general LI method and between the analytic method and the re-
sults by Martin-Atienza and Garcia-Abdeslem (1999). The maxi-
mum difference between the analytic method and the general LI
method is 1.63 X 10~* mGal. The maximum difference between the
analytic method and the results calculated by Martin-Atienza and
Garcia-Abdeslem (1999) is 0.0576 mGal. The results from the ana-
lytic and LI methods are very close.
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Figure 7. (a) Geometry of an irregular mass body, represen-
ting uneven top surface where calculation is made. Density con-
trast is o(x,z) = —0.3—=5X107x+9X 1075z —1.0X 1078x2
+ 1.0 X 1078z (b) Gravity anomalies calculated using the ST ana-
lytic method, the LI (Zhou, 2009a), and the results by Martin-
Atienza and Garcia-Abdeslem (1999). (c) Difference in calculated
gravity anomalies between the ST analytic and LI methods (Zhou,
2009a) and between the ST analytic method and Martin-Atienza and
Garcia-Abdeslem (1999).

CONCLUSIONS

For the density contrast of an irregular 2D mass body approximat-
ed as a polynomial function, which is usually a least-squares fitting
to the density logging data, we expand the closed-form solution at
the origin to any station by reformulating the solution, while keeping
the density-contrast profile and the geometry intact, or transforming
the coordinate system. The closed-form solution for any surface sta-
tion is then programmable to calculate gravity anomaly, rather than
by dividing the source mass into columns and using a 1D vertical
density-contrast model to calculate the gravity at any station. The
source codes of some computer programs used to generate relevant
figures in this paper are available upon request.

Singularity occurs in the arctangent and natural logarithm func-
tions in the analytic solution when the observation points are coinci-
dent with the vertices of the polygonal mass body. An infinitesimal

circle around each singular point is excluded from calculation to
avoid divergence in numerical calculation. Case studies show that
numerical instability occurs in the analytical method but not in direct
numerical integration using the Simpson method. The range of nu-
merical stability is defined as the distance from the source mass cen-
ter to the observation point when the relative error reaches 100%. It
is dependent on specific questions but generally decreases for terms
of higher order in the polynomial density-contrast function. Com-
pared with single terms in the polynomial function of the density
contrast, instability seems to be suppressed for a polynomial of mul-
tiple terms owing to cancellation of errors from individual terms, re-
sulting in negligible errors within a range of 5000 times the size (di-
ameter) of the target.

The complete set of analytic equations was tested through com-
parison with other numerical or seminumerical methods. The analyt-
ic method agrees very well with other methods when the observation
points are within the range of numerical stability, which is usually
the case for the ground gravity survey. This indicates that within the
range of numerical stability, my closed-form solution is accurate and
can be used for irregular 2D mass bodies when the density contrast
can be approximated as a polynomial function in horizontal and/or
vertical positions. However, caution should be exercised in model-
ing or interpreting the gravity-survey data using the analytic meth-
ods when the target distance is outside the range of numerical stabili-
ty. For distant targets, a switch from analytical method to numerical
integration may be necessary for accuracy.
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